某公司生產(chǎn)一種產(chǎn)品,每年投入固定成本0.5萬元,此外,每生產(chǎn)1件這種產(chǎn)品還需要增加投入25元,經(jīng)測(cè)算,市場對(duì)該產(chǎn)品的年需求量為500件,且當(dāng)出售的這種產(chǎn)品的數(shù)量為t(單位:百件)時(shí),銷售所得的收入約為(萬元).
(1)若該公司這種產(chǎn)品的年產(chǎn)量為x(單位:百件).試把該公司生產(chǎn)并銷售這種產(chǎn)品所得的年利潤y表示為年產(chǎn)量x的函數(shù);
(2)當(dāng)該公司的年產(chǎn)量x多大時(shí),當(dāng)年所得利潤y最大?
【答案】分析:(1)由已知中某公司生產(chǎn)一種產(chǎn)品,每年投入固定成本0.5萬元,此外,每生產(chǎn)1件這種產(chǎn)品還需要增加投入25元,經(jīng)測(cè)算,市場對(duì)該產(chǎn)品的年需求量為500件,且當(dāng)出售的這種產(chǎn)品的數(shù)量為t(單位:百件)時(shí),銷售所得的收入約為(萬元).根據(jù)年利潤=銷售額-成立,構(gòu)造出該公司生產(chǎn)并銷售這種產(chǎn)品所得的年利潤y表示為年產(chǎn)量x的函數(shù).
(2)根據(jù)(1)的分段函數(shù)解析式,我們分別求出各段上函數(shù)的最大值,進(jìn)而得到該公司當(dāng)年所得利潤y的最大值,及相應(yīng)的生產(chǎn)量.
解答:解:(1)由題意得:
(6分)
(2)當(dāng)0<x≤5時(shí),函數(shù)對(duì)稱軸為,
故x=4.75時(shí)y最大值為.                                 (3分)
當(dāng)x>5時(shí),函數(shù)單調(diào)遞減,故,(3分)
所以當(dāng)年產(chǎn)量為475件時(shí)所得利潤最大.                     (2分)
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)模型的選擇與應(yīng)用,函數(shù)的值域,分段函數(shù)的解析式求法,二次函數(shù)的性質(zhì),其中(1)中要注意由于市場對(duì)該產(chǎn)品的年需求量為500件,故要分0<x≤5,x>5兩種情況將問題轉(zhuǎn)化為分段函數(shù)模型,(2)要注意分段函數(shù)最值,分段處理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某公司生產(chǎn)一種產(chǎn)品的固定成本是10000元,每生產(chǎn)一件產(chǎn)品需要另外投入80元,又知市場對(duì)這種產(chǎn)品的年需求量為800件,且銷售收入函數(shù)g(t)=-t2+1000t,其中t是產(chǎn)品售出的數(shù)量,且0≤t≤800(利潤=銷售收入-成本).
(1)若x為年產(chǎn)量,y表示利潤,求y=f(x)的解析式;
(2)當(dāng)年產(chǎn)量為多少時(shí),求工廠年利潤的最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司生產(chǎn)一種產(chǎn)品每年需投入固定成本為0.5萬元,此外每生產(chǎn)100件這種產(chǎn)品還需要增加投入0.25萬元.經(jīng)預(yù)測(cè)知,當(dāng)售出這種產(chǎn)品t百件時(shí),若0<t≤5,則銷售所得的收入為5t-
1
2
t2萬元:若t>5,則銷售所得收入為
1
8
t
+
23
2
萬元.
(1)若該公司的這種產(chǎn)品的年產(chǎn)量為x百件(x>0),請(qǐng)把該公司生產(chǎn)并銷售這種產(chǎn)品所得的年利潤y表示為當(dāng)年生產(chǎn)量x的函數(shù);
(2)當(dāng)年產(chǎn)量為多少時(shí),當(dāng)年公司所獲利潤最大?
(3)當(dāng)年產(chǎn)量為多少時(shí),當(dāng)年公司不會(huì)虧本?(取
21.5625
為4.64)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司生產(chǎn)一種產(chǎn)品,其固定成本為0.5萬元,但每生產(chǎn)100件產(chǎn)品需要增加投入0.25萬元,設(shè)銷售收入為R(x)(萬元)且R(x)=
5x-0.5x2(0≤x≤5)
12.5(x>5)
,其中x是年產(chǎn)量(單位百件).
(1)把利潤H(x)(萬元)表示成年產(chǎn)量的函數(shù).
(2)當(dāng)年產(chǎn)量是多少時(shí),當(dāng)年公司的利潤最大值多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•長寧區(qū)一模)某公司生產(chǎn)一種產(chǎn)品,每年投入固定成本0.5萬元,此外,每生產(chǎn)1件這種產(chǎn)品還需要增加投入25元,經(jīng)測(cè)算,市場對(duì)該產(chǎn)品的年需求量為500件,且當(dāng)出售的這種產(chǎn)品的數(shù)量為t(單位:百件)時(shí),銷售所得的收入約為5t-
12
t2
(萬元).
(1)若該公司這種產(chǎn)品的年產(chǎn)量為x(單位:百件).試把該公司生產(chǎn)并銷售這種產(chǎn)品所得的年利潤y表示為年產(chǎn)量x的函數(shù);
(2)當(dāng)該公司的年產(chǎn)量x多大時(shí),當(dāng)年所得利潤y最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司生產(chǎn)一種產(chǎn)品,每年需要投入固定成本0.5萬元,此外每生產(chǎn)100件這種產(chǎn)品還需要增加投資0.25萬元,經(jīng)過市場預(yù)測(cè)得知,市場對(duì)這種產(chǎn)品的年需求量為500件,且當(dāng)售出的這種產(chǎn)品的數(shù)量為t(單位:百件)時(shí),銷售所得的收入約為5t-
t22
(萬元).
(Ⅰ)若該公司這種產(chǎn)品的年產(chǎn)量為x(單位:百件,x>0),試把該公司生產(chǎn)并銷售這種產(chǎn)品所得的利潤表示為當(dāng)年產(chǎn)量x的函數(shù);
(Ⅱ)當(dāng)該公司的年產(chǎn)量多大時(shí),當(dāng)年所得的利潤最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案