分析 (1)求出f′(x),因?yàn)楹瘮?shù)在x=-$\frac{2}{3}$與x=1時(shí)都取得極值,所以得到f′(-$\frac{2}{3}$)=0且f′(1)=0聯(lián)立解得a與b的值,然后把a(bǔ)、b的值代入求得f(x)及f′(x),然后討論導(dǎo)函數(shù)的正負(fù)得到函數(shù)的增減區(qū)間;
(2)根據(jù)(1)函數(shù)的單調(diào)性,由于x∈[-1,2]恒成立求出函數(shù)的最大值值為f(2),代入求出最大值,然后令f(2)<c2列出不等式,求出c的范圍即可
解答 解;(1)f(x)=x3+ax2+bx+c,f'(x)=3x2+2ax+b
由 $\left\{\begin{array}{l}{f′(-\frac{2}{3})=\frac{12}{9}-\frac{4}{3}a+b=0}\\{f′(1)=3+2a+b=0}\end{array}\right.$,解得,a=-$\frac{1}{2}$,b=-2,
f′(x)=3x2-x-2=(3x+2)(x-1),
函數(shù)f(x)的單調(diào)區(qū)間如下表:
x | (-∞,-$\frac{2}{3}$) | -$\frac{2}{3}$ | (-$\frac{2}{3}$,1) | 1 | (1,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | ↑ | 極大值 | ↓ | 極小值 | ↑ |
點(diǎn)評 考查學(xué)生利用導(dǎo)數(shù)研究函數(shù)極值的能力,利用導(dǎo)數(shù)研究函數(shù)單調(diào)性的能力,以及理解函數(shù)恒成立時(shí)所取到的條件.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{1}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{5}$$+\frac{{y}^{2}}{9}$=1 | B. | $\frac{{x}^{2}}{2}$+y2=1 | C. | $\frac{{x}^{2}}{16}$$+\frac{{y}^{2}}{16}$=1 | D. | $\frac{{x}^{2}}{16}$$+\frac{{y}^{2}}{9}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 假設(shè)至多有一個(gè)內(nèi)角大于或等于60° | |
B. | 假設(shè)至多有兩個(gè)內(nèi)角大于或等于60° | |
C. | 假設(shè)沒有一內(nèi)角大于或等于60° | |
D. | 假設(shè)沒有一個(gè)內(nèi)角或至少有兩個(gè)內(nèi)角大于或等于60° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com