【題目】紅隊隊員甲、乙、丙與藍(lán)隊隊員A、B、C進(jìn)行圍棋比賽,甲對A,乙對B,丙對C各一盤,已知甲勝A,乙勝B,丙勝C的概率分別為0.6,0.5,0.5,假設(shè)各盤比賽結(jié)果相互獨立.
(1)求紅隊至少兩名隊員獲勝的概率;
(2)用ξ表示紅隊隊員獲勝的總盤數(shù),求ξ的分布列和數(shù)學(xué)期望Eξ.
【答案】
(1)解:設(shè)甲勝A的事件為D,乙勝B的事件為E,丙勝C的事件為F,
∵甲勝A,乙勝B,丙勝C的概率分別為0.6,0.5,0.5
可以得到D,E,F(xiàn)的對立事件的概率分別為0.4,0,5,0.5
紅隊至少兩名隊員獲勝包括四種情況:DE ,D F, ,DEF,
這四種情況是互斥的,
∴P=0.6×0.5×0.5+0.6×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.55
(2)解:由題意知ξ的可能取值是0,1,2,3
P(ξ=0)=0.4×0.5×0.5=0.1.,
P(ξ=1)=0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.35
P(ξ=3)=0.6×0.5×0.5=0.15
P(ξ=2)=1﹣0.1﹣0.35﹣0.15=0.4
∴ξ的分布列是
ξ | 0 | 1 | 2 | 3 |
P | 0.1 | 0.35 | 0.4 | 0.15 |
∴Eξ=0×0.1+1×0.35+2×0.4+3×0.15=1.6
【解析】(1)由題意知紅隊至少有兩名隊員獲勝包括四種情況,一是只有甲輸,二是只有乙輸,三是只有丙輸,四是三個人都贏,這四種情況是互斥的,根據(jù)相互獨立事件同時發(fā)生的概率和互斥事件的概率得到結(jié)果.(2)由題意知ξ的可能取值是0,1,2,3,結(jié)合變量對應(yīng)的事件寫出變量對應(yīng)的概率,變量等于2使得概率可以用1減去其他的概率得到,寫出分布列,算出期望.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上不恒為0的函數(shù),且對于任意的實數(shù)a,b滿足f(2)=2,f(ab)=af(b)+bf(a),an= (n∈N*),bn= (n∈N*),給出下列命題:
①f(0)=f(1);
②f(x)為奇函數(shù);
③數(shù)列{an}為等差數(shù)列;
④數(shù)列{bn}為等比數(shù)列.
其中正確的命題是 . (寫出所有正確命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解答
(1)設(shè)復(fù)數(shù)z滿足|z|=1,且(3+4i)z為純虛數(shù),求 ;
(2)已知(2 ﹣ )n的展開式中所有二項式系數(shù)之和為64,求展開式的常數(shù)項.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點是直線與橢圓的一個公共點, 分別為該橢圓的左右焦點,設(shè)取得最小值時橢圓為.
(1)求橢圓的標(biāo)準(zhǔn)方程及離心率;
(2)已知為橢圓上關(guān)于軸對稱的兩點, 是橢圓上異于的任意一點,直線分別與軸交于點,試判斷是否為定值;如果為定值,求出該定值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R)滿足f(x+1)﹣f(x)=4x+1,且f(0)=3.
(1)求f(x)的解析式;
(2)若在區(qū)間[﹣1,1]上,不等式f(x)>6x+m恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于x∈R,[x]表示不超過x的最整數(shù),如[1.1]=1,[﹣2.1]=﹣3.定義R上的函數(shù)f(x)=[2x]+[4x]+[8x],若A={y|y=f(x),0≤x≤ },則A中所有元素的和為( )
A.15
B.19
C.20
D.55
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在銳角△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且2asinB= b.
(1)求角A的大。
(2)若a=4,b+c=8,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓心在 軸上的圓 過點 和 ,圓 的方程為 .
(1)求圓 的方程;
(2)由圓 上的動點 向圓 作兩條切線分別交 軸于 , 兩點,求 的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com