【題目】設(shè)函數(shù),函數(shù)在區(qū)間上的最大值為.

1)若,求的值;

2)若對任意的恒成立,求的最大值.

【答案】1;(2.

【解析】

試題(1)根據(jù)可知該函數(shù)是對勾函數(shù)作了左右和上下的平移變換,若,則可得到在區(qū)間上是增函數(shù),故的最大值就是,但是,的圖像是由的圖像作了翻折變換,上不動而下翻折,要比較兩者的大小,所以;(2)第二小題由于不能確定在區(qū)間上是遞增的還是先減后增,因此要分類討論,一種情況是是遞增的,最大值在中產(chǎn)生,另一種情況是先減后增,最大值在或是中產(chǎn)生,通過三種情況分類,最后總結(jié)得到的最小值,也就是的最大值.

試題解析:解:(1)當(dāng)時,在區(qū)間上是增函數(shù),

所以,

所以.

2當(dāng)時,因為,,

所以

,所以.

當(dāng)時,有

,

,所以.

當(dāng)時,有,

所以

,所以.

綜上可知,對任意的都有.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一個動點(diǎn)到點(diǎn)的距離比到直線的距離多1.

(1)求動點(diǎn)的軌跡的方程;

(2)若過點(diǎn)的直線與曲線交于兩點(diǎn),且線段中點(diǎn)是點(diǎn),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時,求的定義域;

2)試判斷函數(shù)在區(qū)間上的單調(diào)性,并給出證明;

3)若在區(qū)間上恒取正值,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】砥礪奮進(jìn)的五年,首都經(jīng)濟(jì)社會發(fā)展取得新成就.2012年以來,北京城鄉(xiāng)居民收入穩(wěn)步增長.隨著擴(kuò)大內(nèi)需,促進(jìn)消費(fèi)等政策的出臺,居民消費(fèi)支出全面增長,消費(fèi)結(jié)構(gòu)持續(xù)優(yōu)化升級,城鄉(xiāng)居民人均可支配收入快速增長,人民生活品質(zhì)不斷提升.下圖是北京市2012-2016年城鄉(xiāng)居民人均可支配收入實際增速趨勢圖(例如2012年,北京城鎮(zhèn)居民收入實際增速為7.3%,農(nóng)村居民收入實際增速為8.2%.

Ⅰ)從2012-2016五年中任選一年,求城鎮(zhèn)居民收入實際增速大于7%的概率;

Ⅱ)從2012-2016五年中任選一年,求至少有一年農(nóng)村和城鎮(zhèn)居民收入實際增速均超過7%的概率;

Ⅲ)由圖判斷,從哪年開始連續(xù)三年農(nóng)村居民收入實際增速方差最大?(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“荊、荊、襄、宜七校聯(lián)考”正在如期開展,組委會為了解各所學(xué)校學(xué)生的學(xué)情,欲從四地選取200人作樣本開展調(diào)研.若來自荊州地區(qū)的考生有1000人,荊門地區(qū)的考生有2000人,襄陽地區(qū)的考生有3000人,宜昌地區(qū)的考生有2000人.為保證調(diào)研結(jié)果相對準(zhǔn)確,下列判斷正確的有( 。

①用分層抽樣的方法分別抽取荊州地區(qū)學(xué)生25人、荊門地區(qū)學(xué)生50人、襄陽地區(qū)學(xué)生75人、宜昌地區(qū)學(xué)生50人;

②可采用簡單隨機(jī)抽樣的方法從所有考生中選出200人開展調(diào)研;

③宜昌地區(qū)學(xué)生小劉被選中的概率為;

④襄陽地區(qū)學(xué)生小張被選中的概率為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=fx)+sinx[]上單調(diào)遞增,則fx)可能是(  )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在道路邊安裝路燈,路面,燈柱高14,燈桿與地面所成角為30°.路燈采用錐形燈罩,燈罩軸線與燈桿垂直,軸線,燈桿都在燈柱和路面寬線確定的平面內(nèi).

(1)當(dāng)燈桿長度為多少時,燈罩軸線正好通過路面的中線?

(2)如果燈罩軸線AC正好通過路面的中線,此時有一高2.5 的警示牌直立在處,求警示牌在該路燈燈光下的影子長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左焦點(diǎn)為,離心率

(I)求橢圓C的標(biāo)準(zhǔn)方程;

(II)已知直線交橢圓C于A,B兩點(diǎn).

①若直線經(jīng)過橢圓C的左焦點(diǎn)F,交y軸于點(diǎn)P,且滿足.求證:為定值;

②若,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為函數(shù)的導(dǎo)函數(shù),且.

(1)判斷函數(shù)的單調(diào)性;

(2)若,討論函數(shù)零點(diǎn)的個數(shù).

查看答案和解析>>

同步練習(xí)冊答案