如圖,一個(gè)圓錐形的空杯子上面放著一個(gè)半球形的冰淇淋,如果冰淇淋融化了并流入杯中,會(huì)溢出杯子嗎?請(qǐng)用你的計(jì)算數(shù)據(jù)說(shuō)明理由。(冰、水的體積差異忽略不計(jì))

冰淇淋融化了,不會(huì)溢出杯子;

解析試題分析:根據(jù)題意,求出半球的體積,圓錐的體積,比較二者大小,判斷是否溢出,即可得答案.
試題解析:因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/94/a/6i9h91.png" style="vertical-align:middle;" />

因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8c/e/csnmh1.png" style="vertical-align:middle;" />所以,冰淇淋融化了,不會(huì)溢出杯子.
考點(diǎn):1.棱柱、棱錐、棱臺(tái)的體積;2.球的體積和表面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知四棱錐P­ABCD的底面ABCD是邊長(zhǎng)為2的正方形,PD⊥底面ABCD,E,F分別為棱BCAD的中點(diǎn).
 
(1)求證:DE∥平面PFB;
(2)已知二面角P­BF­C的余弦值為,求四棱錐P­ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在中,,,上的高,沿折起,使.

(1)證明:平面平面;
(2)設(shè),求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在三棱柱中,四邊形為菱形,,四邊形為矩形,若,.

(1)求證:平面;
(2)求證:;
(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,正三棱錐的底面邊長(zhǎng)為,側(cè)棱長(zhǎng)為,為棱的中點(diǎn).

(1)求異面直線所成角的大小(結(jié)果用反三角函數(shù)值表示);
(2)求該三棱錐的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在長(zhǎng)方體中,, 沿平面把這個(gè)長(zhǎng)方體截成兩個(gè)幾何體: 幾何體(1);幾何體(2)

(I)設(shè)幾何體(1)、幾何體(2)的體積分為是,求的比值
(II)在幾何體(2)中,求二面角的正切值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四邊形為矩形,平面,,平面于點(diǎn),且點(diǎn)上.

(1)求證:;
(2)求四棱錐的體積;
(3)設(shè)點(diǎn)在線段上,且,試在線段上確定一點(diǎn),使得平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四棱錐的底面是正方形,,點(diǎn)在棱上.

(1)求證:平面平面;
(2)當(dāng),且時(shí),確定點(diǎn)的位置,即求出的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在四棱錐P -ABCD中,底面是邊長(zhǎng)為2的菱形,∠DAB=60°,對(duì)角線AC與BD交于點(diǎn)O,PO⊥平面ABCD,PB與平面ABCD所成角為60°.

(1)求四棱錐的體積.
(2)若E是PB的中點(diǎn),求異面直線DE與PA所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案