【題目】在二項式( + )n展開式中,前三項的系數(shù)成等差數(shù)列. 求:(1)展開式中各項系數(shù)和;
【答案】解:由題意得2 × =1+ × ,
化為:n2﹣9n+8=0,解得n=1(舍去)或8.
∴n=8.
在 中,令x=1,可得展開式中各項系數(shù)和= = .
(1)展開式中系數(shù)最大的項.
【答案】
(1)解: 設(shè) 展 開 式 中 第 r+1 項 系 數(shù) 最 大,
則 Tr+1= = ,
則 ,解得 2≤r≤3.
因 此 r=2 或 3,即 展 開 式 中 第 3 項 和 第 4 項 系 數(shù) 最 大,且 T3= =7 .
T4= =7 .
∴展開式中系數(shù)最大的項分別為:7 ,7 .
【解析】(Ⅰ) 由 題 意 得 2 × =1+ × ,化為:n2﹣9n+8=0,解得n=8.在 中,令x=1,可得展開式中各項系數(shù)和.(Ⅱ) 設(shè) 展 開 式 中 第 r+1 項 系 數(shù) 最 大,Tr+1= = ,則 ,解得r即可得出.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對照數(shù)據(jù).
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
(參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5)
(1)請畫出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程 = x+ ;
(3)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)第2題求出的回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果對定義在R上的函數(shù)f(x)對任意兩個不相等的實數(shù)x1 , x2 , 都有(x1﹣x2)[f(x1)﹣f(x2)]>0,則稱函數(shù)f(x)為“H函數(shù)”.給出下列函數(shù)①y=﹣x3+x+1;②y=3x﹣2(sinx﹣cosx);③y=ex+1;④ .其中“H函數(shù)”的個數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱是上的有界函數(shù),其中稱為函數(shù)的上界.
()判斷函數(shù), 是否是有界函數(shù),請寫出詳細(xì)判斷過程.
()試證明:設(shè), ,若, 在上分別以, 為上界,求證:函數(shù)在上以為上界.
()若函數(shù)在上是以為上界的有界函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分別為CD和PC的中點(diǎn).
求證:(1) BE∥平面PAD;
(2) 平面BEF⊥平面PCD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= +alnx﹣2,曲線y=f(x)在點(diǎn)P(1,f(1))處的切線與直線y=x+3垂直.
(1)求實數(shù)a的值;
(2)記g(x)=f(x)+x﹣b(b∈R),若函數(shù)g(x)在區(qū)間[e﹣1 , e]上有兩個零點(diǎn),求實數(shù)b的取值范圍;
(3)若不等式πf(x)>( )1+x﹣lnx在|t|≤2時恒成立,求實數(shù)x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an},{bn}滿足a1=2,b1=4,且 2bn=an+an+1 , an+12=bnbn+1 .
(Ⅰ)求 a 2 , a3 , a4及b2 , b3 , b4;
(Ⅱ)猜想{an},{bn}的通項公式,并證明你的結(jié)論;
(Ⅲ)證明:對所有的 n∈N* , … < < sin .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M過點(diǎn)A(1,3),B(4,2),且圓心在直線y=x﹣3上.
(Ⅰ)求圓M的方程;
(Ⅱ)若過點(diǎn)(﹣4,1)的直線l與圓M相切,求直線l的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com