(本小題14分)

某市的一家報(bào)刊攤點(diǎn),從報(bào)社買(mǎi)進(jìn)《晚報(bào)》的價(jià)格是每份0.20元,賣(mài)出價(jià)是每份0.30元,賣(mài)不掉的報(bào)紙可以以每份0.05元價(jià)格退回報(bào)社.在一個(gè)月(以30天計(jì))里,有20天每天可賣(mài)出400份,其余10天每天只能賣(mài)出250份,但每天從報(bào)社買(mǎi)進(jìn)的份數(shù)必須相同,這個(gè)攤主每天從報(bào)社買(mǎi)進(jìn)多少份,才能使每月所獲的利潤(rùn)最大?并計(jì)算他一個(gè)月最多可賺得多少元?

 

 

【答案】

當(dāng)x = 400時(shí),y有最大值825元

【解析】解  設(shè)攤主每天從報(bào)社買(mǎi)進(jìn)x份,顯然當(dāng)x∈[250,400]時(shí),每月所獲利潤(rùn)才能最大.

于是每月所獲利潤(rùn)y為     ( 4分 )

    y =20·0.30x+10·0.30·250+10·0.05·(x-250)-30·0.20x

=0.5x+625,x∈[250,400].  ( 5分 )

    因函數(shù)y在[250,400]上為增函數(shù),

故當(dāng)x = 400時(shí),y有最大值825元.   ( 5分 )

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014屆廣東省高二第一次階段考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本小題14分)某公司計(jì)劃在今年內(nèi)同時(shí)出售變頻空調(diào)機(jī)和智能洗衣機(jī),由于這兩種產(chǎn)品的市場(chǎng)需求量非常大,有多少就能銷(xiāo)售多少,因此該公司要根據(jù)實(shí)際情況(如資金、勞動(dòng)力)確定產(chǎn)品的月供應(yīng)量,以使得總利潤(rùn)達(dá)到最大已知對(duì)這兩種產(chǎn)品有直接限制的因素是資金和勞動(dòng)力,通過(guò)調(diào)查,得到關(guān)于這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如下表:

 

 

資  金

單位產(chǎn)品所需資金(百元)

月資金供應(yīng)量(百元)

空調(diào)機(jī)

洗衣機(jī)

成  本

30

20

300

勞動(dòng)力(工資)

5

10

110

單位利潤(rùn)

6

8

 

試問(wèn):怎樣確定兩種貨物的月供應(yīng)量,才能使總利潤(rùn)達(dá)到最大,最大利潤(rùn)是多少?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省高三上學(xué)期第一次調(diào)研考試數(shù)學(xué)試卷(實(shí)驗(yàn)班) 題型:解答題

(本小題14分)某企業(yè)生產(chǎn)A、B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如左圖, B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如右圖 (注:利潤(rùn)與投資單位:萬(wàn)元).

 

 

(1)分別將A、B兩種產(chǎn)品的利潤(rùn)表示為投資(萬(wàn)元)的函數(shù)關(guān)系式;

(2)該企業(yè)已籌集到10萬(wàn)元資金,并全部投入A、B兩種產(chǎn)品的生產(chǎn),問(wèn):怎樣分配這10萬(wàn)元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬(wàn)元?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省肇慶市高三復(fù)習(xí)必修五綜合練習(xí) 題型:解答題

(本小題14分)某工廠要制造A種電子裝置41臺(tái),B種電子裝置66臺(tái),需用薄鋼板給每臺(tái)裝置配一個(gè)外殼,已知薄鋼板的面積有兩種規(guī)格:甲種薄鋼板每張面積2㎡,可做A、B的外殼分別為2個(gè)和7個(gè),乙種薄鋼板每張面積5㎡,可做A、B的外殼分別為7個(gè)和9個(gè),求兩種薄鋼板各用多少?gòu)垼拍苁箍偟挠昧厦娣e最小?

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省杭州蕭山三校高三上學(xué)期期中聯(lián)考理科數(shù)學(xué)卷 題型:解答題

(本小題14分)

某創(chuàng)業(yè)投資公司擬投資開(kāi)發(fā)某種新能源產(chǎn)品,估計(jì)能獲得10萬(wàn)元~1000萬(wàn)元的投資收益.現(xiàn)準(zhǔn)備制定一個(gè)對(duì)科研課題組的獎(jiǎng)勵(lì)方案:獎(jiǎng)金y(單位:萬(wàn)元)隨投資收益x(單位:萬(wàn)元)的增加而增加,且獎(jiǎng)金不超過(guò)9萬(wàn)元,同時(shí)獎(jiǎng)金不超過(guò)投資收益的20%.

(1)若建立函數(shù)模型制定獎(jiǎng)勵(lì)方案,試用數(shù)學(xué)語(yǔ)言表述公司對(duì)獎(jiǎng)勵(lì)函數(shù)模型的基本要求;

(2)現(xiàn)有兩個(gè)獎(jiǎng)勵(lì)函數(shù)模型:(1)y=;(2)y=4lgx-3.試分析這兩個(gè)函數(shù)模型是否符合公司要求?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題14分)

某化工廠生產(chǎn)某種產(chǎn)品,每件產(chǎn)品的生產(chǎn)成本是3元,根據(jù)市場(chǎng)調(diào)查,預(yù)計(jì)每件產(chǎn)品的出廠價(jià)為x元(7≤x≤10)時(shí),一年的產(chǎn)量為(11-x)2萬(wàn)件;若該企業(yè)所生產(chǎn)的產(chǎn)品全部銷(xiāo)售,則稱該企業(yè)正常生產(chǎn);但為了保護(hù)環(huán)境,用于污染治理的費(fèi)用與產(chǎn)量成正比,比例系數(shù)為常數(shù)k (1≤k≤3)。

(1)求該企業(yè)正常生產(chǎn)一年的利潤(rùn)F(x)與出廠價(jià)x的函數(shù)關(guān)系式;

(2)當(dāng)每件產(chǎn)品的出廠價(jià)定為多少元時(shí),企業(yè)一年的利潤(rùn)最大,并求最大利潤(rùn).

查看答案和解析>>

同步練習(xí)冊(cè)答案