已知f(
x
+1)=x+2
x
,求f(x)的解析式.
考點:函數(shù)解析式的求解及常用方法
專題:函數(shù)的性質及應用
分析:配湊可得f(
x
+1)=(
x
+1)2-1,注意函數(shù)的定義域即可.
解答: 解:∵f(
x
+1)=x+2
x

=(
x
+1)2-1,
又∵
x
+1≥1
∴f(x)=x2-1,x≥1
點評:本題考查函數(shù)解析式的求解,整體配湊是解決問題的關鍵,屬基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設A、B是非空的數(shù)集,如果
 
,使
 
,那么就稱f:A→B為從集合A到集合B的一個函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若(a,b)是函數(shù)y=f(x)的單調增區(qū)間,x1,x2∈(a,b),且x1<x2,則有( 。
A、f(x1)>f(x2
B、f(x1)=f(x2
C、f(x1)<f(x2
D、以上都有可能

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=x+
1
x-3
(x>3),則f(x)的最小值為( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

奇函數(shù)f(x)在(0,+∞)上的解析式是f(x)=x(1-x),則f(x)的函數(shù)解析式是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知二次函數(shù)f(x)滿足條件f(0)=1及f(x+1)-f(x)=2x,求f(x);
(2)若f(x)滿足關系式f(x)+2f(
1
x
)=3x,求f(x)的解析式;
(3)f(x+1)=x2+4x+1,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面上兩點M(-5,0)和N(5,0),若直線上存在點P使|PM|-|PN|=6,則稱該直線為“單曲型直線”,下列直線中是“單曲型直線”的是( 。
①y=x+1;    ②y=2;   ③y=
4
3
x;   ④y=2x+1.
A、①③B、①②C、②③D、③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的奇函數(shù)f(x)滿足f(x+3)=f(x),當0<x≤1時,f(x)=2x,則f (2015)=( 。
A、2
B、-2
C、-
1
2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題P:任意x∈R,|x+1|>0,則¬P為
 

查看答案和解析>>

同步練習冊答案