根據(jù)下列條件求橢圓的標準方程:
(1) 兩準線間的距離為,焦距為2 ;
(2) 已知P點在以坐標軸為對稱軸的橢圓上,點P 到兩焦點的距離分別為過P點作長軸的垂線恰好過橢圓的一個焦點.
科目:高中數(shù)學(xué) 來源: 題型:
已知曲線E:ax2+by2=1(a>0,b>0),經(jīng)過點的直線l與曲線E交于點A、B,且
(1) 若點B的坐標為(0,2),求曲線E的方程;
(2) 若a=b=1,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知拋物線y2=2px(p>0)的焦點為F,P、Q是拋物線上的兩個點,若△PQF是邊長為2的正三角形,則p的值是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,已知橢圓=1(a>b>0)的左焦點為F,右頂點為A,點B在橢圓上,且BF⊥x軸,直線AB交y軸于點P.若,則橢圓的離心率是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標系xOy中,已知F1,F(xiàn)2分別是橢圓E:=1(a>b>0)的左、右焦點,A,B分別是橢圓E的左、右頂點,且=0.
(1) 求橢圓E的離心率;
(2) 已知點D(1,0)為線段OF2的中點,M為橢圓E上的動點(異于點A、B),連結(jié)MF1并延長交橢圓E于點N,連結(jié)MD、ND并分別延長交橢圓E于點P、Q,連結(jié)PQ,設(shè)直線MN、PQ的斜率存在且分別為k1、k2,試問是否存在常數(shù)λ,使得k1+λk2=0恒成立?若存在,求出λ的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在平面上,若兩個正三角形的邊長的比為1∶2,則它們的面積比為1∶4,類似地,在空間內(nèi),若兩個正四面體的棱長的比為1∶2,則它們的體積比為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com