分析 (I)利用二倍角公式和兩角和公式對(duì)函數(shù)解析式整理化簡,進(jìn)而求得函數(shù)的最小正周期;把圖象過點(diǎn)代入函數(shù)解析式求得cosα的值,進(jìn)而求得α.
(Ⅱ)利用正弦函數(shù)的圖象和性質(zhì)求得函數(shù)的單調(diào)增區(qū)間.
解答 解:(I)f(x)=2sin$({x-\frac{α}{2}})cos({x-\frac{α}{2}})+2\sqrt{3}{cos^2}({x-\frac{α}{2}})-\sqrt{3}$=sin(2x-α)+$\sqrt{3}$cos(2x-α)=2sin(2x-α+$\frac{π}{3}$)
∴函數(shù)f(x)的最小正周期T=$\frac{2π}{2}$=π,
∵函數(shù)圖象過點(diǎn)$({\frac{π}{12},0})$,
∴2sin($\frac{π}{6}$-α+$\frac{π}{3}$)=0,
∴cosα=0,
∵α∈[0,π],
∴α=$\frac{π}{2}$.
(Ⅱ)由(I)知f(x)=2sin(2x-$\frac{π}{6}$),
由-$\frac{π}{2}$+2kπ≤2x-$\frac{π}{6}$≤$\frac{π}{2}$+2kπ,k∈Z,
得-$\frac{π}{6}$+kπ≤x≤$\frac{π}{3}$+kπ,k∈Z,
∵$x∈[{0,\frac{π}{2}}]$,
∴f(x)的單調(diào)增區(qū)間為[0,$\frac{π}{3}$].
點(diǎn)評(píng) 本題主要考查了兩角和公式,二倍角公式的應(yīng)用,三角函數(shù)圖象與性質(zhì)的運(yùn)用.考查學(xué)生對(duì)基礎(chǔ)知識(shí)的掌握和熟練應(yīng)用能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [2,+∞) | B. | [2,e) | C. | $({e+\frac{1}{e},+∞})$ | D. | $[{2,e+\frac{1}{e}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | $\sqrt{2}$ | D. | $2\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com