在面積為1的△PMN中,tan∠PMN=,tan∠MNP=-2,適當(dāng)建立坐標(biāo)系,求以M、N為焦點,且過點P的橢圓方程.
橢圓方程為+=1.
以點M、N所在直線為x軸,MN的垂直平分線為y軸建立直角坐標(biāo)系,設(shè)所求橢圓方程為+=1,
則|MN|=2c,M(-c,0),N(c,0).
設(shè)P(xP,yP),則由tan∠PMN=,得=,
由tan∠MNP=-2,得tan(π-∠MNP)=2,
=2,
解得xP=c,yP=c.
又SMNP=c×|yP|=1,即c2=1,
故c=,即P(,),將P點坐標(biāo)代入橢圓方程,再由c2=a2-b2解得a2=,b2=3.
故所求橢圓方程為+=1.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)向量,過定點,以方向向量的直線與經(jīng)過點,以向量為方向向量的直線相交于點P,其中
(1)求點P的軌跡C的方程;
(2)設(shè)過的直線與C交于兩個不同點M、N,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率,為過點和上頂點的直線,下頂點的距離為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓的動弦, 若為線段的中點,線段的中垂線和x軸交點為,試求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓,
(1)求斜率為2的平行弦的中點軌跡方程。
(2)過A(2,1)的直線L與橢圓相交,求L被截得的弦的中點軌跡方程;
(3)過點P(0.5,0.5)且被P點平分的弦所在直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知動點到兩個定點的距離的和等于4.
(1)求動點所在的曲線的方程;
(2)若點在曲線上,且,試求面積的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若△ABC的兩個頂點坐標(biāo)A(-4,0)、B(4,0),△ABC的周長為18,則頂點C的軌跡方程為(    )
A.+="1"B.+=1(y≠0)
C.+=1(y≠0)D.+=1(y≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓(φ為參數(shù))上一點M與原點的連線與x軸正方向所成角為,求點M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)F1、F2是橢圓+=1的兩個焦點,P是橢圓上一點,且|PF1|-|PF2|=1,則cos∠F1PF2=___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若直線y=x+t與橢圓+y2=1相交于A、B兩點,則|AB|的最大值是(   )
A.2                B.            C.          D.

查看答案和解析>>

同步練習(xí)冊答案