已知橢圓的離心率,為過點(diǎn)和上頂點(diǎn)的直線,下頂點(diǎn)的距離為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓的動弦, 若為線段的中點(diǎn),線段的中垂線和x軸交點(diǎn)為,試求的范圍.
(Ⅰ)    (Ⅱ)
(I)直線的方程為,又,

,解得,
,得.①
所以,橢圓方程為.-------------------------------------------------------------4分
(Ⅱ)設(shè)又題意直線CD的斜率存在,設(shè)為,則


②-①得
------------------------------------------------------------------------------7分
∴線段CD的中垂線方程為:
,則.-------------------------------------------------------------------9分
又聯(lián)立與橢圓方程,有,
,
即有,----------------------------------------------------------------11分
-
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖橢圓 (a>b>0)的上頂點(diǎn)為A,左頂點(diǎn)為B, F為右焦點(diǎn), 過F作平行與AB的直線交橢圓于C、D兩點(diǎn). 作平行四邊形OCED, E恰在橢圓上.
(1)求橢圓的離心率;
(2)若平行四邊形OCED的面積為, 求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)A,B分別是直線上的兩個動點(diǎn),并且,動點(diǎn)P滿足.記動點(diǎn)P的軌跡為C.
(I)求軌跡C的方程;
(II)若點(diǎn)D的坐標(biāo)為(0,16),M、N是曲線C上的兩個動點(diǎn),且,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:=1()的離心率為,短軸一個端點(diǎn)到右焦點(diǎn)的距離為.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于兩點(diǎn),坐標(biāo)原點(diǎn)到直線的距離為,求△面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一束光線從點(diǎn)出發(fā),經(jīng)直線上一點(diǎn)反射后,恰好穿過點(diǎn).(Ⅰ)求點(diǎn)關(guān)于直線的對稱點(diǎn)的坐標(biāo);
(Ⅱ)求以為焦點(diǎn)且過點(diǎn)的橢圓的方程;
(Ⅲ)設(shè)直線與橢圓的兩條準(zhǔn)線分別交于、兩點(diǎn),點(diǎn)為線段上的動點(diǎn),求點(diǎn) 到的距離與到橢圓右準(zhǔn)線的距離之比的最小值,并求取得最小值時點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果方程表示焦點(diǎn)在軸上的橢圓,則的取值范圍是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在面積為1的△PMN中,tan∠PMN=,tan∠MNP=-2,適當(dāng)建立坐標(biāo)系,求以M、N為焦點(diǎn),且過點(diǎn)P的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓中心在原點(diǎn),焦點(diǎn)在橫軸上,焦距為4,且和直線3x+2y-16=0相切,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知兩點(diǎn),若直線上存在點(diǎn)P,使得,則稱該直線為“A型直線”。給出下列直線:①;②;③;④,其中是“A型直線”的是                  

查看答案和解析>>

同步練習(xí)冊答案