在數(shù)列{an}中,a1=1,an+1-an=2n,則數(shù)列的通項(xiàng)an=
 
考點(diǎn):數(shù)列遞推式
專題:點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:在數(shù)列遞推式中依次取n=1,2,…,n-1,累加后利用等差數(shù)列的求和公式得答案.
解答: 解:由an+1-an=2n,得
a2-a1=2×1,
a3-a2=2×2,
a4-a3=2×3,

an-an-1=2(n-1)(n≥2).
累加得:an-a1=2(1+2+…+n-1)=2×
n(n-1)
2
=n2-n.
又a1=1,
an=n2-n+1(n≥2).
驗(yàn)證n=1時(shí)上式成立.
an=n2-n+1
故答案為:n2-n+1.
點(diǎn)評(píng):本題考查了數(shù)列遞推式,考查了累加法求數(shù)列的通項(xiàng)公式,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+
a
x-b+
1
4
(a,b為正實(shí)數(shù))只有一個(gè)零點(diǎn),則
1
a
+
2
b
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足:an=(-1)nn,Sn為數(shù)列{an}的前n項(xiàng)和,則S2013=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
x+5(x≤-1)
x2(x>-1)
,則f(f(-2))=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)M是一個(gè)非空集合,#是它的一種運(yùn)算,如果滿足以下條件:
(Ⅰ)對(duì)M中任意元素a,b,c都有(a#b)#c=a#(b#c);
(Ⅱ)對(duì)M中任意兩個(gè)元素a,b,滿足a#b∈M.
則稱M對(duì)運(yùn)算#封閉.
下列集合對(duì)加法運(yùn)算和乘法運(yùn)算都封閉的為
 

①{-2,-1,1,2}     
②{1,-1,0}   
③Z     
④Q.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:復(fù)數(shù)z滿足zi=3-2i,則復(fù)數(shù)z=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在邊長(zhǎng)為1的正方形網(wǎng)格中用粗線畫(huà)出了某個(gè)多面體的三視圖,則該多面體的最長(zhǎng)的棱長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
x=t
y=1+kt
(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸的正半軸為極軸,單位長(zhǎng)度不變,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsin2θ=4cosθ,若直線l和曲線C相切,則實(shí)數(shù)k的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知O是坐標(biāo)原點(diǎn),點(diǎn)M(-1,1),若點(diǎn)N(x,y)為平面區(qū)域
x+y≥2
x≤1
y≤2
上的一個(gè)動(dòng)點(diǎn),則
OM
ON
的取值范圍是( 。
A、[-1,0]
B、[0,1]
C、[0,2]
D、[-1,2]

查看答案和解析>>

同步練習(xí)冊(cè)答案