5.已知A${\;}_{n}^{2}$=7A${\;}_{n-4}^{2}$,則n的值為(  )
A.7B.8C.9D.10

分析 根據(jù)排列數(shù)的公式,列出方程,求出n的值即可.

解答 解:根據(jù)排列數(shù)的公式,得;
$\left\{\begin{array}{l}{n-4≥2}\\{n≥2}\\{n(n-1)=7(n-4)(n-5)}\end{array}\right.$,
解得n=7,或n=$\frac{10}{3}$(不合題意,應(yīng)舍去);
∴n的值是7.
故選:A.

點(diǎn)評 本題考查了排列數(shù)公式的應(yīng)用問題,也考查了解方程的問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.觀察下列不等式1>$\frac{1}{2}$,1+$\frac{1}{2}$+$\frac{1}{3}$>1,1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{7}$>$\frac{3}{2}$,1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{15}$>2,…,則可歸納出一般性的不等式1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{n}-1}$>$\frac{n}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.一排九個(gè)坐位有六個(gè)人坐,若每個(gè)空位兩邊都坐有人,共有( 。┓N不同的坐法.
A.7200B.3600C.2400D.1200

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.某人設(shè)計(jì)了一個(gè)圖案如圖所示,他有四個(gè)顏色想都涂在這個(gè)圖案的六個(gè)區(qū)域中,相鄰不能同色(如①②為相鄰,①⑤為不相鄰等),他有(  )種涂色方法.
A.408B.336C.360D.384

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.“m<1”是“函數(shù)f (x)=x2-x+$\frac{1}{4}$m存在零點(diǎn)”的充分不必要條件.(填“充要”,“充分不必要”,“必要不充分”,“既不充分也不必要條件”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)A={x|x≤5,x∈N],B={x|1<x<6,x∈N},則∁AB={0,1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.從2,3,4,5,6,7,8,9中任意取出3個(gè)數(shù),使它們的和為奇數(shù),則共有28種不同的取法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.箱子中有4個(gè)分別標(biāo)有號碼1、2、3、4的小球,從中隨機(jī)取出一個(gè)記下號碼后放回,再隨機(jī)取出一個(gè)記下號碼,則兩次記下的號碼至少一個(gè)奇數(shù)的概率為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在△ABC中,(sinA+sinB)(sinA-sinB)≤sinC(sinC-sinB),則A的取值范圍是( 。
A.(0,$\frac{π}{6}$]B.[$\frac{π}{6},π$)C.(0,$\frac{π}{3}$]D.[$\frac{π}{3},π$)

查看答案和解析>>

同步練習(xí)冊答案