【題目】如圖,已知直線l與拋物線y2=2x相交于A(x1 , y1),B(x2 , y2)兩點(diǎn),與x軸相交于點(diǎn)M,若y1y2=﹣4,

(1)求:M點(diǎn)的坐標(biāo);
(2)求證:OA⊥OB;
(3)求△AOB的面積的最小值.

【答案】
(1)解:設(shè)M點(diǎn)的坐標(biāo)為(t,0),直線l方程為x=my+t,

代入y2=2x得y2﹣2my﹣2t=0,①

y1、y2是此方程的兩根,

∴y1y2=﹣2t=﹣4,∴t=2,即M點(diǎn)的坐標(biāo)為(2,0)


(2)證明:∵y1y2=﹣4,

∴x1x2+y1y2= y12y22+y1y2=0,

∴OA⊥OB;


(3)解:由方程①,y1+y2=2m,y1y2=﹣4,且|OM|=t=2,

于是SAOB= |OM||y1﹣y2|= = ≥2,

∴當(dāng)m=0時(shí),△AOB的面積取最小值2


【解析】(1)設(shè)M點(diǎn)的坐標(biāo)為(t,0),直線l方程為x=my+t,代入y2=x得y2﹣2my﹣2t=0,利用韋達(dá)定理可證得M點(diǎn)的坐標(biāo)為(2,0).(2)根據(jù)y1y2=﹣4結(jié)合向量的坐標(biāo)運(yùn)算得出OA⊥OB.(3)SAOB= |OM||y1﹣y2|= = ≥2.由此能求出結(jié)果.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱錐V﹣ABC中,VA=VB=AC=BC=2,AB= ,VC=1.
(Ⅰ)證明:AB⊥VC;
(Ⅱ)求三棱錐V﹣ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐O﹣ABCD中,∠BAD=120°,OA⊥平面ABCD,E為OD的中點(diǎn),OA=AC= AD=2,AC平分∠BAD.

(1)求證:CE∥平面OAB;
(2)求四面體OACE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如表是某校120名學(xué)生假期閱讀時(shí)間(單位:小時(shí))的頻率分布表,現(xiàn)用分層抽樣的方法從[10,15),[15,20),[20,25),[25,30)四組中抽取20名學(xué)生了解其閱讀內(nèi)容,那么從這四組中依次抽取的人數(shù)是(

分組

頻數(shù)

頻率

[10,15)

12

0,10

[15,20)

30

a

[20,25)

m

0.40

[25,30)

n

0.25

合計(jì)

120

1.00


A.2,5,8,5
B.2,5,9,4
C.4,10,4,2
D.4,10,3,3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在無(wú)窮數(shù)列{an}中,a1=p是正整數(shù),且滿足 (Ⅰ)當(dāng)a3=9時(shí),給出p的值;(結(jié)論不要求證明)
(Ⅱ)設(shè)p=7,數(shù)列{an}的前n項(xiàng)和為Sn , 求S150;
(Ⅲ)如果存在m∈N* , 使得am=1,求出符合條件的p的所有值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】北京是我國(guó)嚴(yán)重缺水的城市之一.為了倡導(dǎo)“節(jié)約用水,從我做起”,小明在他所在學(xué)校的2000名同學(xué)中,隨機(jī)調(diào)查了40名同學(xué)家庭中一年的月均用水量(單位:噸),并將月均用水量分為6組:[2,4),[4,6),[6,8),[8,10),[10,12),[12,14]加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.
(Ⅰ)給出圖中實(shí)數(shù)a的值;
(Ⅱ)根據(jù)樣本數(shù)據(jù),估計(jì)小明所在學(xué)校2000名同學(xué)家庭中,月均用水量低于8噸的約有多少戶;
(Ⅲ)在月均用水量大于或等于10噸的樣本數(shù)據(jù)中,小明決定隨機(jī)抽取2名同學(xué)家庭進(jìn)行訪談,求這2名同學(xué)中恰有1人所在家庭的月均用水量屬于[10,12)組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知n次多項(xiàng)式 ,在求fn(x0)值的時(shí)候,不同的算法需要進(jìn)行的運(yùn)算次數(shù)是不同的.例如計(jì)算 (k=2,3,4,…,n)的值需要k﹣1次乘法運(yùn)算,按這種算法進(jìn)行計(jì)算f3(x0)的值共需要9次運(yùn)算(6次乘法運(yùn)算,3次加法運(yùn)算).現(xiàn)按如圖所示的框圖進(jìn)行運(yùn)算,計(jì)算fn(x0)的值共需要次運(yùn)算.(
A.2n
B.2n
C.
D.n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的離心率為 ,以原點(diǎn)為圓心,橢圓的短半軸為半徑的圓與直線 相切.
(1)求橢圓的方程;
(2)設(shè)P(4,0),A,B是橢圓C上關(guān)于x軸對(duì)稱的任意兩個(gè)不同的點(diǎn),連接PB交橢圓C于另一點(diǎn)E,證明直線AE與x軸相交于點(diǎn)Q(1,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)盒子中裝有大量形狀大小一樣但重量不盡相同的小球,從中隨機(jī)抽取50個(gè)作為樣本,稱出它們的重量(單位:克),重量分組區(qū)間為[5,15],(15,25],(25,35],(35,45],由此得到樣本的重量頻率分布直方圖(如圖),

(1)求a的值,并根據(jù)樣本數(shù)據(jù),試估計(jì)盒子中小球重量的眾數(shù)與平均值;
(2)從盒子中隨機(jī)抽取3個(gè)小球,其中重量在[5,15]內(nèi)的小球個(gè)數(shù)為X,求X的分布列和數(shù)學(xué)期望.(以直方圖中的頻率作為概率)

查看答案和解析>>

同步練習(xí)冊(cè)答案