若雙曲線
x2
a2
-
y2
3
=1的一條漸近線被圓(x-2)2+y2=4所截得的弦長為2,則該雙曲線的實軸長為
 
考點:雙曲線的簡單性質(zhì)
專題:計算題,直線與圓,圓錐曲線的定義、性質(zhì)與方程
分析:求出雙曲線的漸近線方程,求得圓心到漸近線的距離,再由直線和圓相交的弦長公式,解方程即可得到a=1,進(jìn)而得到實軸長.
解答: 解:雙曲線
x2
a2
-
y2
3
=1的漸近線方程為y=±
3
a
x

3
x
±ay=0,
圓(x-2)2+y2=4的圓心為C(2,0),半徑為r=2,
由圓的弦長公式得弦心距|CD|=
22-12
=
3
,
另一方面,圓心C到雙曲線的漸近線
3x
-ay=0的距離為
d=
|
3
×2-a×0|
3+a2
=
2
3
3+a2

所以d=
2
3
3+a2
=
3
,
解得a2=1,即a=1,
該雙曲線的實軸長為2a=2.
故答案為:2.
點評:本題考查雙曲線的方程和性質(zhì),考查直線和圓相交的弦長公式,考查點到直線的距離公式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合U=R,A={x∈Z|x≤-1},B={-2,-1,0,1,2},則(∁UA)∩B等于( 。
A、{-2,-1,0}
B、{-2,-1}
C、{1,2}
D、{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點P是曲線y=x2-lnx任意一點,則點P到直線y=x-2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=4x,點P(m,0),O為坐標(biāo)原點,若在拋物線C上存在一點Q,使得∠OQP=90°,則實數(shù)m的取值范圍是(  )
A、(4,8)
B、(4,+∞)
C、(0,4)
D、(8,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD的底面是平行四邊形,PA⊥平面ABCD,AC⊥AB,點E是PD的中點.
(I)求證:PB⊥AC;
(Ⅱ)求證:PB∥平面ACE;
(Ⅲ)求三棱錐E-ABC與四棱錐P-ABCD的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
lgx,    x>0
x2-4,  x<0
的零點是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
sin(x-3π)cos(x+
π
2
)
tan(π-x)
+sin(2x+
π
3
).
(1)求f(
π
12
)的值;
(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中(如圖1),已知AC=BC=2,∠ACB=120°,D,E,F(xiàn)分別為AB,AC,BC的中點,EF交CD于G,把△ADC沿CD折成如圖2所示的三棱錐C-A1BD.
(1)求證:E1F∥平面A1BD;
(2)若二面角A1-CD-B為直二面角,求直線A1F與平面BCD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z=a+bi(a,b∈R),且滿足zi=1+i(其中i為虛數(shù)單位),則a+b=
 

查看答案和解析>>

同步練習(xí)冊答案