11.已知sin75°=$\frac{\sqrt{6}-\sqrt{2}}{4}$,求cos15°,cos165°.

分析 利用誘導公式化簡,代入計算,可得結(jié)論.

解答 解:∵sin75°=$\frac{\sqrt{6}-\sqrt{2}}{4}$,
∴cos15°=sin75°=$\frac{\sqrt{6}-\sqrt{2}}{4}$,cos165°=-sin75°=-$\frac{\sqrt{6}-\sqrt{2}}{4}$.

點評 本題考查誘導公式的運用,考查學生的計算能力,比較基礎(chǔ).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

1.x2=y2?x=y(用符號“⇒”,“?”,“?”填空).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知α∈($\frac{3}{2}$π,2π),sinα=-$\frac{15}{17}$,求角α的其他三角函數(shù)值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知等差數(shù)列{an}的前n項和為Sn,且a4=5,S9=54.
(1)求數(shù)列{an}的通項公式與Sn;
(2)若bn=$\frac{1}{{S}_{n}}$,求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=sin(x+φ)cosx的圖象關(guān)于原點O(0,0)對稱,試求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.函數(shù)y=sin($\frac{π}{3}-\frac{x}{2}$)的最小正周期是(  )
A.πB.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.欲將正六邊形的各邊和各條對角線都染為n種顏色之一,使得以正六邊形的任何3個頂點作為頂點的三角形有3種不同顏色的邊,并且不同的三角形使用不同的3色組合,則n的最小值是7?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.對某電子元件進行壽命追蹤調(diào)查,情況如下.
壽命(h)100~200200~300300~400400~500500~600
個  數(shù)2030804030
(1)畫出頻率分布直方圖;
(2)估計電子元件壽命在400h以上的在總體中占的比例;
(3)估計電子元件壽命的眾數(shù),中位數(shù)及平均數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.函數(shù)f(x)=$\frac{2x+1}{x+1}$.
(1)用定義證明函數(shù)的單調(diào)性并寫出單調(diào)區(qū)間;
(2)求f(x)在[3,5]上最大值和最小值.

查看答案和解析>>

同步練習冊答案