精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在周長為12的菱形ABCD中,AE=1,AF=2,若P為對角線BD上一動點,則EP+FP的最小值為( 。

A.1
B.2
C.3
D.4

【答案】C
【解析】解:作F點關于BD的對稱點F′,則PF=PF′,連接EF′交BD于點P.
∴EP+FP=EP+F′P.
由兩點之間線段最短可知:當E、P、F′在一條直線上時,EP+FP的值最小,此時EP+FP=EP+F′P=EF′.
∵四邊形ABCD為菱形,周長為12,
∴AB=BC=CD=DA=3,AB∥CD,
∵AF=2,AE=1,
∴DF=AE=1,
∴四邊形AEF′D是平行四邊形,
∴EF′=AD=3.
∴EP+FP的最小值為3.
故選:C.

作F點關于BD的對稱點F′,則PF=PF′,由兩點之間線段最短可知當E、P、F′在一條直線上時,EP+FP有最小值,然后求得EF′的長度即可.本題主要考查的是菱形的性質、軸對稱﹣﹣路徑最短問題,明確當E、P、F′在一條直線上時EP+FP有最小值是解題的關鍵.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某地隨著經濟的發(fā)展,居民收入逐年增長,下表是該地一建設銀行連續(xù)五年的儲蓄存款(年底余額),如下表1

年份x

2011

2012

2013

2014

2015

儲蓄存款y(千億元)

5

6

7

8

10

為了研究計算的方便,工作人員將上表的數據進行了處理, 得到下表2

時間代號t

1

2

3

4

5

z

0

1

2

3

5

(Ⅰ)求z關于t的線性回歸方程;

(Ⅱ)用所求回歸方程預測到2020年年底,該地儲蓄存款額可達多少?

(附:對于線性回歸方程,其中

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱錐P﹣ABC中,AB⊥平面PAC,∠APC=90°,E是AB的中點,M是CE的中點,N點在PB上,且4PN=PB.
(Ⅰ)證明:平面PCE⊥平面PAB;
(Ⅱ)證明:MN∥平面PAC.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在中, 中點, (不同于點),延長,將沿折起,得到三棱錐,如圖所示.

Ⅰ)若的中點,求證:直線平面

Ⅱ)求證:

Ⅲ)若平面平面,試判斷直線與直線能否垂直?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面是邊長為的正方形,側面

底面,且, 、分別為、的中點.

1)求證: 平面;

2)求證:面平面;

3)在線段上是否存在點,使得二面角的余弦值為?說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點,圓

)設,求過點且與圓相切的直線方程.

)設,直線過點且被圓截得的弦長為,求直線的方程.

)設,直線過點,求被圓截得的線段的最短長度,并求此時的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】國內某知名連鎖店分店開張營業(yè)期間,在固定的時間段內消費達到一定標準的顧客可進行一次抽獎活動,隨著抽獎活動的有效展開,參與抽獎活動的人數越來越多,該分店經理對開業(yè)前7天參加抽獎活動的人數進行統(tǒng)計,表示開業(yè)第天參加抽獎活動的人數,得到統(tǒng)計表格如下:

經過進一步的統(tǒng)計分析,發(fā)現具有線性相關關系.

(1)根據上表給出的數據,用最小二乘法,求出的線性回歸方程;

(2)若該分店此次抽獎活動自開業(yè)始,持續(xù)10天,參加抽獎的每位顧客抽到一等獎(價值200元獎品)的概率為,抽到二等獎(價值100元獎品)的概率為,抽到三等獎(價值10元獎品)的概率為,試估計該分店在此次抽獎活動結束時送出多少元獎品?

參考公式:,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了節(jié)約水資源,某市準備按照居民家庭年用水量實行階梯水價.水價分檔遞增,計劃使第一檔、第二檔和第三檔的水價分別覆蓋全市居民家庭的80%,15%和5%,為合理確定各檔之間的界限,隨機抽查了該市5萬戶居民家庭上一年的年用水量(單位:m3),繪制了統(tǒng)計圖.如圖所示,下面四個推斷(  )
①年用水量不超過180m3的該市居民家庭按第一檔水價交費;
②年用水量超過240m3的該市居民家庭按第三檔水價交費;
③該市居民家庭年用水量的中位數在150﹣180之間;
④該市居民家庭年用水量的平均數不超過180.

A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在等邊△ABC中,

(1)如圖1,P,Q是BC邊上的兩點,AP=AQ,∠BAP=20°,求∠AQB的度數;
(2)點P,Q是BC邊上的兩個動點(不與點B,C重合),點P在點Q的左側,且AP=AQ,點Q關于直線AC的對稱點為M,連接AM,PM.
①依題意將圖2補全;
②小茹通過觀察、實驗提出猜想:在點P,Q運動的過程中,始終有PA=PM,小茹把這個猜想與同學們進行交流,通過討論,形成了證明該猜想的幾種想法:
想法1:要證明PA=PM,只需證△APM是等邊三角形;
想法2:在BA上取一點N,使得BN=BP,要證明PA=PM,只需證△ANP≌△PCM;
想法3:將線段BP繞點B順時針旋轉60°,得到線段BK,要證PA=PM,只需證PA=CK,PM=CK…
請你參考上面的想法,幫助小茹證明PA=PM(一種方法即可).

查看答案和解析>>

同步練習冊答案