與圓x2+y2-x+2y=0關(guān)于直線x-y+1=0對(duì)稱的圓的方程是
 
考點(diǎn):關(guān)于點(diǎn)、直線對(duì)稱的圓的方程
專題:直線與圓
分析:本題求圓關(guān)于直線對(duì)稱的圓的方程,只要求出圓心的對(duì)稱點(diǎn),即可求出對(duì)稱圓的圓心,得出對(duì)稱圓的方程.
解答: 解:∵圓x2+y2-x+2y=0,
(x-
1
2
)2+(y+1)2=
5
4
,
圓心C(
1
2
,-1)
,半徑r=
5
2

設(shè)圓心C(
1
2
,-1)
關(guān)于直線l:x-y+1=0對(duì)稱點(diǎn)為C′(x′,y′),
由直線l垂直平分線段CC′得:
y′-(-1)
x′-
1
2
×1=-1
x′+
1
2
2
-
y′-1
2
+1=0

x′=-2
y′=
3
2
,
∴圓心C′(-2,
3
2
)
,
∴與圓x2+y2-x+2y=0關(guān)于直線x-y+1=0對(duì)稱的圓的方程是(x+2)2+(y-
3
2
)2=
5
4
點(diǎn)評(píng):本題考查的是圓與圓關(guān)于直線的對(duì)稱,解題的關(guān)鍵是找出圓心關(guān)于直線的對(duì)稱點(diǎn),本題計(jì)算量適中,思維難度不大,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b∈R,且ab≠0.
(I)若ab>0,求證:
b
a
+
a
b
≥2;  
(Ⅱ)若ab<0,求證:|
b
a
+
a
b
|≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O點(diǎn)為坐標(biāo)原點(diǎn),向量
OA
=(3,-4),
OB
=(6,-3),
OC
=(5-m,-3-m).
(1)若A,B,C三點(diǎn)共線,求實(shí)數(shù)m的值;
(2)若△ABC為直角三角形,且A為直角,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=sinωxcosωx-
3
sin2ωx+
3
2
(ω>0)在一個(gè)周期內(nèi)的圖象如圖所示,A為圖象的最高點(diǎn),B、C為圖象與軸的交點(diǎn),且△ABC為直角三角形.
(Ⅰ)求ω的值及f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若f(x)的圖象與f(x)的圖象與關(guān)于點(diǎn)(-
1
3
,0)對(duì)稱,且對(duì)一切x∈R,恒有m2+[g(x)]2>4[m+g(-x)]成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求不等式的解集:x2-4x-5>0;
(2)求函數(shù)的定義域:y=
(x-2)(x+1)
+5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)某地區(qū)對(duì)12歲兒童瞬時(shí)記憶能力進(jìn)行調(diào)查.瞬時(shí)記憶能力包括聽覺記憶能力與視覺記憶能力.某班學(xué)生共有40人,下表為該學(xué)生瞬時(shí)記憶能力的調(diào)查結(jié)果.例如表中聽覺記憶能力為中等,且視覺記憶能力偏高的學(xué)生為3人.
視覺
聽覺
視覺記憶能力
偏低中等偏高超常
聽覺
記憶
能力
偏低0751
中等183b
偏高2a01
超常0211
由于部分?jǐn)?shù)據(jù)技失,只知道從這40位學(xué)生中隨機(jī)抽取一個(gè),視覺記憶能力恰為中等,且聽覺記憶能力為中等或中等以上的概率為
2
5

(1)試確定a、b的值;
(2)從40人中任意抽取3人,求其中至少有一位具有聽覺記憶能力或視覺記憶能力超常的學(xué)生的概率;
(3)從視覺記憶能力偏高的學(xué)生中任意抽取3人,設(shè)具有聽覺記憶能力中等的學(xué)生人數(shù)為ξ,求隨機(jī)變量ξ的數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面幾何里,我們知道,正三角形的外接圓和內(nèi)切圓的面積之比是4:1.拓展到空間,研究正四面體(四個(gè)面均為全等的正三角形的四面體)的外接球和內(nèi)切球的體積關(guān)系,可以得出的正確結(jié)論是:正四面體的外接球和內(nèi)切球的體積之比是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點(diǎn)P(-
3
,m)是角θ終邊上的一點(diǎn),且cosθ=-
2
39
13
,則m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
ax2+2x(a≠0),g(x)=lnx.
(Ⅰ)若h(x)=f(x)-g(x)是減函數(shù),求a的取值范圍;
(Ⅱ)是否存在實(shí)數(shù)a>0,使得方程
g(x)
x
=f′(x)-(2a+1)在區(qū)間(
1
e
,e)內(nèi)有且只有兩個(gè)不相等的實(shí)數(shù)根?若存在,求出a的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案