精英家教網 > 高中數學 > 題目詳情

【題目】對定義在[0,1]上,并且同時滿足以下兩個條件的函數f(x)稱為M函數:
(i)對任意的x∈[0,1],恒有f(x)≥0;
(ii)當x1≥0,x2≥0,x1+x2≤1時,總有f(x1+x2)≥f(x1)+f(x2)成立.
則下列四個函數中不是M函數的個數是(
①f(x)=x2②f(x)=x2+1
③f(x)=ln(x2+1)④f(x)=2x﹣1.
A.1
B.2
C.3
D.4

【答案】A
【解析】解:(i)在[0,1]上,四個函數都滿足;(ii)x1≥0,x2≥0,x1+x2≤1;
對于①, ,∴①滿足;
對于②, =2x1x2﹣1<0,∴②不滿足.
對于③, = 而x1≥0,x2≥0,∴ ,∴ ,∴ ,
,∴ ,∴③滿足;
對于④,
= ,∴④滿足;
故選:A.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知冪函數f(x)=xa的圖象經過點( , ).
(1)求函數f(x)的解析式,并判斷奇偶性;
(2)判斷函數f(x)在(﹣∞,0)上的單調性,并用單調性定義證明.
(3)作出函數f(x)在定義域內的大致圖象(不必寫出作圖過程).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知全集U={1,2,3,4},集合A={1,2,x2}與B={1,4}是它的子集,
(1)求UB;
(2)若A∩B=B,求x的值;
(3)若A∪B=U,求x.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=log2(x+1),g(x)=log2(3x+1).
(1)求出使g(x)≥f(x)成立的x的取值范圍;
(2)當x∈[0,+∞)時,求函數y=g(x)﹣f(x)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在等比數列{}中,,公比,且, 的等比中項為2.

(1)求數列{}的通項公式;

(2)設 ,求:數列{}的前項和為,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列函數在其定義域中,既是奇函數又是增函數的(
A.y=x+1
B.y=﹣x2
C.y=x|x|
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)是定義在R上不恒為0的函數,且對于任意的實數a,b滿足f(2)=2,f(ab)=af(b)+bf(a),an= (n∈N*),bn= (n∈N*),給出下列命題:
①f(0)=f(1);
②f(x)為奇函數;
③數列{an}為等差數列;
④數列{bn}為等比數列.
其中正確的命題是 . (寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在等差數列{an}中,a2+a7=﹣23,a3+a8=﹣29.
(1)求數列{an}的通項公式;
(2)設數列{an+bn}是首項為1,公比為c的等比數列,求{bn}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在底面為矩形的四棱錐中, .

(1)證明:平面平面;

(2)若異面直線所成角為 , ,求二面角的大小.

查看答案和解析>>

同步練習冊答案