已知圓C:(x+3)2+y2=100和點B(3,0),P是圓上一點,線段BP的垂直平分線交CP于沒M點,則M點的軌跡方程是( )
A.y2=6
B.
C.
D.x2+y2=25
【答案】分析:根據(jù)線段中垂線的性質(zhì)可得,|MB|=|MP|,又|MP|+|MC|=半徑10,故有|MC|+|MB|=5>|AC|,根據(jù)橢圓的定義判斷軌跡橢圓,求出a、b值,即得橢圓的標準方程.
解答:解:由圓的方程可知,圓心C(-1,0),半徑等于10,設(shè)點M的坐標為(x,y ),∵BP的垂直平分線交CP于M,
∴|MB|=|MQ|. 又|MQ|+|MC|=半徑10,∴|MC|+|MB|=10>|BC|.依據(jù)橢圓的定義可得,
點M的軌跡是以 B、C 為焦點的橢圓,且 2a=10,c=3,∴b=4,
故橢圓方程為,
故選B.
點評:本題考查橢圓的定義、橢圓的標準方程,得出|MC|+|MB|=10>|BC|,是解題的關(guān)鍵和難點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-3)2+(y-4)2=4,直線l1過定點A(1,0).
(Ⅰ)若l1與圓相切,求l1的方程;
(Ⅱ)若l1與圓相交于P,Q兩點,線段PQ的中點為M,又l1與l2:x+2y+2=0的交點為N,求證:AM•AN為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知圓C:(x-3)2+(y-4)2=4,
(Ⅰ)若直線l1過定點A(1,0),且與圓C相切,求l1的方程;
(Ⅱ)若圓D的半徑為3,圓心在直線l2:x+y-2=0上,且與圓C外切,求圓D的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-3)2+(y-4)2=4,
(1)直線l1過定點A (1,0).若l1與圓C相切,求l1的方程;
(2)直線l2過B(2,3)與圓C相交于P,Q兩點,求線段PQ的中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-3)2+(y-4)2=4,
(Ⅰ)若a=y-x,求a的最大值和最小值;
(Ⅱ)若圓D的半徑為3,圓心在直線L:x+y-2=0上,且與圓C外切,求圓D的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x+3)2+(y-4)2=4.
(1)若直線l1過點A(-1,0),且與圓C相切,求直線l1的方程;
(2)若圓D的半徑為4,圓心D在直線l2:2x+y-2=0上,且與圓C內(nèi)切,求圓D的方程.

查看答案和解析>>

同步練習(xí)冊答案