【題目】已知三棱柱中, ,側(cè)面底面, 是的中點(diǎn), .
(Ⅰ)求證: 面;
(Ⅱ)求直線(xiàn)與平面所成線(xiàn)面角的正弦值.
【答案】(Ⅰ)證明見(jiàn)解析;(Ⅱ) .
【解析】試題分析:
(Ⅰ)由題意可證得側(cè)面底面于,而在底面內(nèi),故面.
(Ⅱ)首先做出直線(xiàn)與平面所成的角,然后結(jié)合結(jié)合關(guān)系整理計(jì)算即可求得直線(xiàn)與平面所成線(xiàn)面角的正弦值是.
試題解析:
(Ⅰ)取中點(diǎn),連接,
中, ,故是等邊三角形,∴,
又,而與相交于,∴面,
故,又,所以,
又∵側(cè)面底面于, 在底面內(nèi),∴面.
(Ⅱ)過(guò)作平面,垂足為,連接, 即為直線(xiàn)與平面所成的角,
由(Ⅰ)知,側(cè)面底面,所以平面,由等邊知,
又∵平面,
∴,
由(Ⅰ)知面,所以,∴四邊形是正方形,
∵,∴,
∴在中, ,
所以直線(xiàn)與平面所成線(xiàn)面角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=-n2+n,求數(shù)列{|an|}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知長(zhǎng)方形中, , 為的中點(diǎn),將沿折起,使得平面平面,設(shè)點(diǎn)是線(xiàn)段上的一動(dòng)點(diǎn)(不與, 重合).
(Ⅰ)當(dāng)時(shí),求三棱錐的體積;
(Ⅱ)求證: 不可能與垂直.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,且.設(shè)函數(shù)在區(qū)間內(nèi)單調(diào)遞減; 曲線(xiàn)與軸交于不同的兩點(diǎn),如果“”為真命題,“”為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)列中, ,其前項(xiàng)和為,滿(mǎn)足,其中.
(1)設(shè),證明:數(shù)列是等差數(shù)列;
(2)設(shè)為數(shù)列的前項(xiàng)和,求;
(3)設(shè)數(shù)列的通項(xiàng)公式為為非零整數(shù)),試確定的值,使得對(duì)任意,都有數(shù)列為遞增數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿(mǎn)足, ,其中.
(1)設(shè),求證:數(shù)列是等差數(shù)列,并求出的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,是否存在正整數(shù),使得對(duì)于恒成立,若存在,求出的最小值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com