【題目】如圖,已知長(zhǎng)方形中, , 為的中點(diǎn),將沿折起,使得平面平面,設(shè)點(diǎn)是線段上的一動(dòng)點(diǎn)(不與, 重合).
(Ⅰ)當(dāng)時(shí),求三棱錐的體積;
(Ⅱ)求證: 不可能與垂直.
【答案】(Ⅰ);(Ⅱ)證明見(jiàn)解析.
【解析】試題分析:
(Ⅰ)由于折疊時(shí)有平面平面,因此取中點(diǎn),則有,從而有平面,因此是三棱錐的高,求出高和底面積可得體積;
(Ⅱ)假設(shè)能與垂直,由已知又可得,從而平面,因此有,從而有平面,因此,這是不可能的,結(jié)論得出.
試題解析:
(Ⅰ)取的中點(diǎn),連接.
∵,∴,又為的中點(diǎn),
∴,
∵平面平面,又平面, 平面,
∴平面.
∵,∴,
又,
∴.
(Ⅱ)假設(shè).
由(Ⅰ)可知, 平面,∴.
在長(zhǎng)方形中, ,
∴、都是等腰直角三角形,∴.
而、平面, ,
∴平面.
而平面,
∴.
由假設(shè), 、平面, ,
∴平面,
而平面,∴,
這與已知是長(zhǎng)方形矛盾,
所以, 不可能與垂直.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合A={x|x2﹣3x+2=0},B={x|x2+2(a+1)x+(a2﹣5)=0}.
(1)若A∩B={2},求實(shí)數(shù)a的值;
(2)若A∪B=A,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某奧運(yùn)會(huì)主體育場(chǎng)的簡(jiǎn)化鋼結(jié)構(gòu)俯視圖如圖所示,內(nèi)外兩圈的鋼骨架是離心率相同的橢圓,我們稱這兩個(gè)橢圓相似。
(1)已知橢圓,寫(xiě)出與橢圓相似且焦點(diǎn)在軸上、短半軸長(zhǎng)為的橢圓的標(biāo)準(zhǔn)方程;若在橢圓上存在兩點(diǎn)、關(guān)于直線對(duì)稱,求實(shí)數(shù)的取值范圍;
(2)從外層橢圓頂點(diǎn)A、B向內(nèi)層橢圓引切線AC、BD,設(shè)內(nèi)層橢圓方程為+=1 (ab0),AC與BD的斜率之積為-,求橢圓的離心率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C的半徑為2,圓心在軸的正半軸上,直線與圓C相切.
(1)求圓C的方程;
(2)過(guò)點(diǎn)的直線與圓C交于不同的兩點(diǎn),且當(dāng)時(shí),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱柱中, ,側(cè)面底面, 是的中點(diǎn), .
(Ⅰ)求證: 面;
(Ⅱ)求直線與平面所成線面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C的圓心在直線上,且與直線相切于點(diǎn)
(1)求圓C的方程;
(2)是否存在過(guò)點(diǎn)的直線與圓C交于兩點(diǎn),且的面積為(O為坐標(biāo)原點(diǎn)),若存在,求出直線的方程,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2sin2( +x)+ (sin2x﹣cos2x),x∈[ , ].
(1)求 的值;
(2)求f(x)的單調(diào)區(qū)間;
(3)若不等式|f(x)﹣m|<2恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的函數(shù)y=f(x)是減函數(shù),且對(duì)任意的a∈R,都有f(﹣a)+f(a)=0,若x、y滿足不等式f(x2﹣2x)+f(2y﹣y2)≤0,則當(dāng)1≤x≤4時(shí),x﹣3y的最大值為( )
A.10
B.8
C.6
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面四邊形是矩形,平面,分別是的中點(diǎn),.
(1)求證:平面;
(2)求二面角的大小;
(3)若,求直線與平面所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com