【題目】已知函數(shù).
(1)若函數(shù)在上是減函數(shù),求實數(shù)的取值范圍;
(2)當時,分別求函數(shù)的最小值和的最大值,并證明當時, 成立;
(3)令,當時,判斷函數(shù)有幾個不同的零點并證明.
【答案】(1)(2)見解析(3)函數(shù)只有1個零點.
【解析】試題分析:(1)轉(zhuǎn)化為導數(shù)恒小于等于零,構(gòu)造函數(shù),利用根的分布即可求出;(2)分別求出兩函數(shù)的導數(shù),利用導數(shù)求最值;(3)分離函數(shù),求導數(shù),分析函數(shù)單調(diào),再根據(jù)零點的存在性定理證明即可.
試題解析:
(1)由題意得在上恒成立,
令,有即
得,所以.
(2)由題意可得
令,則, ,
所以在上單調(diào)遞減,在上單調(diào)遞增,
所以當時, 取最小值3.
,令,得,
當, , 在上單調(diào)遞增,
所以,
因為當時, ,
所以當時, .
(3)因為,
所以,
其定義域為,
,
因為,所以,所以在上單調(diào)遞減,
因為,所以, ,
所以,
又,所以函數(shù)只有1個零點.
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以原點為極點, 軸的正半軸為極軸,以相同的長度單位建立極坐標系,已知直線 的極坐標方程為 ,曲線 的極坐標方程為 .
(1)設(shè) 為參數(shù),若 ,求直線 的參數(shù)方程;
(2)已知直線 與曲線 交于 ,設(shè) ,且 ,求實數(shù) 的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù) 是定義域為 的偶函數(shù),當 時, 若關(guān)于 的方程 有且僅有8個不同實數(shù)根,則實數(shù) 的取
值范圍是
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù) 是定義在 上的單調(diào)函數(shù),且對于任意正數(shù) 有 ,已知 ,若一個各項均為正數(shù)的數(shù)列 滿足 ,其中 是數(shù)列 的前 項和,則數(shù)列 中第18項 ( )
A.
B.9
C.18
D.36
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: 的兩個焦點和短軸的兩個頂點構(gòu)成的四邊形是一個正方形,且其周長為 .
(I)求橢圓C的方程;
(II)設(shè)過點B(0,m)(m>0)的直線 與橢圓C相交于E,F(xiàn)兩點,點B關(guān)于原點的對稱點為D,若點D總在以線段EF為直徑的圓內(nèi),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商場為吸引顧客消費推出一項優(yōu)惠活動.活動規(guī)則如下:消費額每滿100元可轉(zhuǎn)動如圖所示的轉(zhuǎn)盤一次,并獲得相應金額的返券,假定指針等可能地停在任一位置.若指針停在A區(qū)域返券60元;停在B區(qū)域返券30元;停在C區(qū)域不返券.例如:消費218元,可轉(zhuǎn)動轉(zhuǎn)盤2次,所獲得的返券金額是兩次金額之和.
(1)若某位顧客消費128元,求返券金額不低于30元的概率;
(2)若某位顧客恰好消費280元,并按規(guī)則參與了活動,他獲得返券的金額記為(元).求隨機變量的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), ()
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)證明:當時,對于任意, ,總有成立,其中是自然對數(shù)的底數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列各項均為正數(shù), , ,且對任意恒成立,記的前項和為.
(1)若,求的值;
(2)證明:對任意正實數(shù), 成等比數(shù)列;
(3)是否存在正實數(shù),使得數(shù)列為等比數(shù)列.若存在,求出此時和的表達式;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)f(x)是單調(diào)區(qū)間;
(2)如果關(guān)于x的方程有實數(shù)根,求實數(shù)的取值集合;
(3)是否存在正數(shù)k,使得關(guān)于x的方程有兩個不相等的實數(shù)根?如果存在,求k滿足的條件;如果不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com