已知A,B,C為△ABC的三個(gè)內(nèi)角,其所對(duì)的邊分別為a,b,c,且2cos2+cos A=0.

(1)求角A的值;

(2)若a=2,b+c=4,求△ABC的面積.

 

【答案】

(1);(2)

【解析】

試題分析:(1)因?yàn)椋琧osA=

所以,2cos2+cos A=0.可化為,2cosA+1=0

∴cosA=,

(2)根據(jù)余弦定理得,

又因?yàn)閎+c=4,所以12=16-bc,bc=4,。

考點(diǎn):本題主要考查三角函數(shù)的和差倍半公式,余弦定理的應(yīng)用,三角形面積的計(jì)算。

點(diǎn)評(píng):中檔題,近些年,涉及三角函數(shù)、三角形的題目常常出現(xiàn)在高考題中,往往需要綜合應(yīng)用三角公式化簡(jiǎn)函數(shù),以進(jìn)一步解題。應(yīng)用正弦定理、余弦定理求邊長(zhǎng)、角等,有時(shí)運(yùn)用函數(shù)方程思想,問(wèn)題的解決較為方便。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a、b、c為直線,α、β、γ為平面,則下列命題中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知a,b,c為兩兩不相等的實(shí)數(shù),求證:a2+b2+c2>ab+bc+ca;
(2)設(shè)a,b,c∈(0,+∞),且a+b+c=1,求證(
1
a
-1)(
1
b
-1)(
1
c
-1)≥8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A、B、C為△ABC的三內(nèi)角,且其對(duì)分別為a、b、c,若A=120°,a=2
3
,b+c=4,則△ABC的面積為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A、B、C為△ABC的三個(gè)內(nèi)角,設(shè)f(A,B)=sin22A+cos22B-
3
sin2A-cos2B+2

(1)當(dāng)f(A,B)取得最小值時(shí),求C的大。
(2)當(dāng)C=
π
2
時(shí),記h(A)=f(A,B),試求h(A)的表達(dá)式及定義域;
(3)在(2)的條件下,是否存在向量
p
,使得函數(shù)h(A)的圖象按向量
p
平移后得到函數(shù)g(A)=2cos2A的圖象?若存在,求出向量
p
的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c為三條不同的直線,且a?平面M,b?平面N,M∩N=c,則下面四個(gè)命題中正確的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案