【題目】為了解某校學(xué)生參加社區(qū)服務(wù)的情況,采用按性別分層抽樣的方法進(jìn)行調(diào)查.已知該校共有學(xué)生960人,其中男生560人,從全校學(xué)生中抽取了容量為n的樣本,得到一周參加社區(qū)服務(wù)時間的統(tǒng)計數(shù)據(jù)如下:

超過1小時

不超過1小時

20

8

12

m

1)求mn

2)能否有95%的把握認(rèn)為該校學(xué)生一周參加社區(qū)服務(wù)時間是否超過1小時與性別有關(guān)?

附:

PK2k

0.050

0.010

0.001

k

3.841

6.635

10.828

K2

【答案】1m8,n482)不能有95%的把握認(rèn)為該校學(xué)生一周參加社區(qū)服務(wù)時間超過1小時與性別有關(guān).

【解析】

1)由分層抽樣的概念,可按比例求出女生人數(shù),從而得

2)根據(jù)所給數(shù)據(jù)計算后可得結(jié)論.

1)根據(jù)題意知該校有女生400人,

所以,

解得m8,

所以n20+8+12+848

2)根據(jù)題意填寫列聯(lián)表如下;

超過1小時的人數(shù)

不超過1小時的人數(shù)

合計

20

8

28

12

8

20

合計

32

16

48

根據(jù)列聯(lián)表計算K20.68573.841,

查表得PK2≥3.841≈0.050;

所以不能有95%的把握認(rèn)為該校學(xué)生一周參加社區(qū)服務(wù)時間超過1小時與性別有關(guān).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在邊長為1的正方體中,E,F,G,H分別為A1B1,C1D1AB,CD的中點(diǎn),點(diǎn)PG出發(fā),沿折線GBCH勻速運(yùn)動,點(diǎn)QH出發(fā),沿折線HDAG勻速運(yùn)動,且點(diǎn)P與點(diǎn)Q運(yùn)動的速度相等,記EF,P,Q四點(diǎn)為頂點(diǎn)的三棱錐的體積為V,點(diǎn)P運(yùn)動的路程為x,在0≤x≤2時,Vx的圖象應(yīng)為(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)的圖象在點(diǎn)處的切線的斜率為1,問:在什么范圍取值時,對于任意的,函數(shù)在區(qū)間上總存在極值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了保障人民群眾的身體健康,在預(yù)防新型冠狀病毒期間,貴陽市市場監(jiān)督管理局加強(qiáng)了對市場的監(jiān)管力度,對生產(chǎn)口罩的某工廠利用隨機(jī)數(shù)表對生產(chǎn)的個口罩進(jìn)行抽樣測試是否合格,先將個口罩進(jìn)行編號,編號分別為;從中抽取個樣本,如下提供隨機(jī)數(shù)表的第行到第行:

若從表中第行第列開始向右依次讀取個數(shù)據(jù),則得到的第個樣本編號為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中取兩個定點(diǎn),再取兩個動點(diǎn),且.

(1)求直線的交點(diǎn)的軌跡的方程;

(2)的直線與軌跡交于兩點(diǎn),過點(diǎn)軸且與軌跡交于另一點(diǎn),為軌跡的右焦點(diǎn),若,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)三角形的邊長為不相等的整數(shù),且最大邊長為n,這些三角形的個數(shù)為an.

1)求數(shù)列{an}的通項(xiàng)公式;

2)在1,2,,100中任取三個不同的整數(shù),求它們可以是一個三角形的三條邊長的概率.

附:1+22+32+…+n2;1+23+33+…+n3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,,,平面.

1)求證:;

2)若,直線與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角中,角的對邊分別為,.

(1)求角的大小;

(2)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中a為常數(shù).

當(dāng),求a的值;

當(dāng)時,關(guān)于x的不等式恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案