【題目】為了解某校學(xué)生參加社區(qū)服務(wù)的情況,采用按性別分層抽樣的方法進(jìn)行調(diào)查.已知該校共有學(xué)生960人,其中男生560人,從全校學(xué)生中抽取了容量為n的樣本,得到一周參加社區(qū)服務(wù)時間的統(tǒng)計數(shù)據(jù)如下:
超過1小時 | 不超過1小時 | |
男 | 20 | 8 |
女 | 12 | m |
(1)求m,n;
(2)能否有95%的把握認(rèn)為該校學(xué)生一周參加社區(qū)服務(wù)時間是否超過1小時與性別有關(guān)?
附:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
K2
【答案】(1)m=8,n=48(2)不能有95%的把握認(rèn)為該校學(xué)生一周參加社區(qū)服務(wù)時間超過1小時與性別有關(guān).
【解析】
(1)由分層抽樣的概念,可按比例求出女生人數(shù),從而得;
(2)根據(jù)所給數(shù)據(jù)計算后可得結(jié)論.
(1)根據(jù)題意知該校有女生400人,
所以,
解得m=8,
所以n=20+8+12+8=48;
(2)根據(jù)題意填寫列聯(lián)表如下;
超過1小時的人數(shù) | 不超過1小時的人數(shù) | 合計 | |
男 | 20 | 8 | 28 |
女 | 12 | 8 | 20 |
合計 | 32 | 16 | 48 |
根據(jù)列聯(lián)表計算K20.6857<3.841,
查表得P(K2≥3.841)≈0.050;
所以不能有95%的把握認(rèn)為該校學(xué)生一周參加社區(qū)服務(wù)時間超過1小時與性別有關(guān).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在邊長為1的正方體中,E,F,G,H分別為A1B1,C1D1,AB,CD的中點(diǎn),點(diǎn)P從G出發(fā),沿折線GBCH勻速運(yùn)動,點(diǎn)Q從H出發(fā),沿折線HDAG勻速運(yùn)動,且點(diǎn)P與點(diǎn)Q運(yùn)動的速度相等,記E,F,P,Q四點(diǎn)為頂點(diǎn)的三棱錐的體積為V,點(diǎn)P運(yùn)動的路程為x,在0≤x≤2時,V與x的圖象應(yīng)為( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)的圖象在點(diǎn)處的切線的斜率為1,問:在什么范圍取值時,對于任意的,函數(shù)在區(qū)間上總存在極值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了保障人民群眾的身體健康,在預(yù)防新型冠狀病毒期間,貴陽市市場監(jiān)督管理局加強(qiáng)了對市場的監(jiān)管力度,對生產(chǎn)口罩的某工廠利用隨機(jī)數(shù)表對生產(chǎn)的個口罩進(jìn)行抽樣測試是否合格,先將個口罩進(jìn)行編號,編號分別為;從中抽取個樣本,如下提供隨機(jī)數(shù)表的第行到第行:
若從表中第行第列開始向右依次讀取個數(shù)據(jù),則得到的第個樣本編號為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中取兩個定點(diǎn),,再取兩個動點(diǎn),,且.
(1)求直線與的交點(diǎn)的軌跡的方程;
(2)過的直線與軌跡交于兩點(diǎn),過點(diǎn)作軸且與軌跡交于另一點(diǎn),為軌跡的右焦點(diǎn),若,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)三角形的邊長為不相等的整數(shù),且最大邊長為n,這些三角形的個數(shù)為an.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)在1,2,…,100中任取三個不同的整數(shù),求它們可以是一個三角形的三條邊長的概率.
附:1+22+32+…+n2;1+23+33+…+n3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中a為常數(shù).
Ⅰ當(dāng),求a的值;
Ⅱ當(dāng)時,關(guān)于x的不等式恒成立,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com