分析 先由基本不等式可得(a-b)b≤$\frac{{a}^{2}}{4}$,可得a+$\frac{1}{(a-b)b}$≥a+$\frac{4}{{a}^{2}}$=$\frac{a}{2}$+$\frac{a}{2}$+$\frac{4}{{a}^{2}}$,再由基本不等式可得.
解答 解:∵a,b∈R+,且a>b,∴a-b>0,
∴(a-b)b≤$(\frac{a-b+b}{2})^{2}$=$\frac{{a}^{2}}{4}$,
∴a+$\frac{1}{(a-b)b}$≥a+$\frac{4}{{a}^{2}}$=$\frac{a}{2}$+$\frac{a}{2}$+$\frac{4}{{a}^{2}}$≥3$\root{3}{\frac{a}{2}•\frac{a}{2}•\frac{4}{{a}^{2}}}$=3
當(dāng)且僅當(dāng)a-b=b且$\frac{a}{2}$=$\frac{4}{{a}^{2}}$即a=2且b=1時(shí)取等號(hào)
故答案為:3.
點(diǎn)評(píng) 本題考查基本不等式求最值,連續(xù)利用基本不等式并注意等號(hào)成立的條件是解決問題的關(guān)鍵,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 6 | C. | $\frac{1}{6}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com