【題目】如圖1,在多邊形中,四邊形為等腰梯形,,,,四邊形為直角梯形,,.以為折痕把等腰梯形折起,使得平面平面,如圖2所示.
(1)證明:平面.
(2)求直線與平面所成角的正切值.
【答案】(1)詳見解析;(2).
【解析】
(1)取的中點(diǎn),連接,可證明及,由線面垂直的判定定理證明平面.
(2)以為軸,其中軸,軸分別在平面平面中,且與垂直,垂足為建立空間直角坐際系.寫出各個(gè)點(diǎn)的坐標(biāo),并求得平面的法向量,即可由法向量法求得直線與平面所成角的正弦值,進(jìn)而求得直線與平面所成角的正切值.
(1)證明:取的中點(diǎn),連接,如下圖所示:
,,
由四邊形為菱形,可知,
在中,在,
所以.
又平面平面,平面平面,,,
所以,平面,
所以平面,平面,
所以,又因?yàn)?/span>,
所以平面.
(2)由平面平面,如圖取的中點(diǎn)為,以為原點(diǎn),以為軸,其中軸,軸分別在平面平面中,且與垂直,垂足為建立空間直角坐際系.
因?yàn)?/span>,,,,,,.
設(shè)平面的法向量,則,即,
不妨令,得.
設(shè)直線與平面所成的角為,則,
所以.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓: 經(jīng)過橢圓: 的左右焦點(diǎn),且與橢圓在第一象限的交點(diǎn)為,且三點(diǎn)共線,直線交橢圓于, 兩點(diǎn),且().
(1)求橢圓的方程;
(2)當(dāng)三角形的面積取得最大值時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在黨中央的正確領(lǐng)導(dǎo)下,通過全國人民的齊心協(xié)力,特別是全體一線醫(yī)護(hù)人員的奮力救治,二月份“新冠肺炎”疫情得到了控制.甲、乙兩個(gè)地區(qū)采取防護(hù)措施后,統(tǒng)計(jì)了從2月7日到2月13日一周的新增“新冠肺炎”確診人數(shù),繪制成如圖折線圖:
(1)根據(jù)圖中甲、乙兩個(gè)地區(qū)折線圖的信息,寫出你認(rèn)為最重要的兩個(gè)統(tǒng)計(jì)結(jié)論;
(2)新冠病毒在進(jìn)入人體后有一段時(shí)間的潛伏期,此期間為病毒傳播的最佳時(shí)期,我們把與病毒感染者有過密切接觸的人群稱為密切接觸者,假設(shè)每位密切接觸者不再接觸其他病毒感染者,10天內(nèi)所有人不知情且生活照常.
(i)在不加任何防護(hù)措施的前提下,假設(shè)每位密切接觸者被感染的概率均為.第一天,若某位感染者產(chǎn)生名密切接觸者則第二天新增感染者平均人數(shù)為ap;第二天,若每位感染者都產(chǎn)生a名密切接觸者,則第三天新增感染者平均人數(shù)為;以此類推,記由一名感染者引發(fā)的病毒傳播的第n天新增感染者平均人數(shù)為.寫出,;
(ii)在(i)的條件下,若所有人都配戴口罩后,假設(shè)每位密切接觸者被感染的概率均為,且滿足關(guān)系,此時(shí),記由一名感染者引發(fā)的病毒傳播的第n天新增感染者平均人數(shù)為.當(dāng)最大,且時(shí),根據(jù)和的值說明戴口罩的必要性.(精確到)
參考公式:函數(shù)的導(dǎo)函數(shù);
參考數(shù)據(jù):,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的最大值;
(2)若函數(shù)存在兩個(gè)極值點(diǎn),,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了解高三男生的體能達(dá)標(biāo)情況,抽調(diào)了120名男生進(jìn)行立定跳遠(yuǎn)測試,根據(jù)統(tǒng)計(jì)數(shù)據(jù)得到如下的頻率分布直方圖.若立定跳遠(yuǎn)成績落在區(qū)間的左側(cè),則認(rèn)為該學(xué)生屬“體能不達(dá)標(biāo)的學(xué)生,其中分別為樣本平均數(shù)和樣本標(biāo)準(zhǔn)差,計(jì)算可得(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).
(1)若該校高三某男生的跳遠(yuǎn)距離為,試判斷該男生是否屬于“體能不達(dá)標(biāo)”的學(xué)生?
(2)該校利用分層抽樣的方法從樣本區(qū)間中共抽出5人,再從中選出兩人進(jìn)行某體能訓(xùn)練,求選出的兩人中恰有一人跳遠(yuǎn)距離在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)狱c(diǎn)到兩點(diǎn),的距離之和為4,點(diǎn)在軸上的射影是C,.
(1)求動(dòng)點(diǎn)的軌跡方程;
(2)過點(diǎn)的直線交點(diǎn)的軌跡于點(diǎn),交點(diǎn)的軌跡于點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線的焦點(diǎn)為,(其中)是上的一點(diǎn),且.
(1)求拋物線的方程;
(2)已知為拋物線上除頂點(diǎn)之外的任意一點(diǎn),在點(diǎn)處的切線與軸交于點(diǎn),過點(diǎn)的直線交拋物線于,兩點(diǎn),設(shè),,的斜率分別為,,,求證:,,成等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性.
(2)若函數(shù)有兩個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為,若曲線與曲線關(guān)于直線對稱.
(1)求曲線的直角坐標(biāo)方程;
(2)在以為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,射線與的異于極點(diǎn)的交點(diǎn)為,與的異于極點(diǎn)的交點(diǎn)為,求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com