某班有50名學(xué)生,其中正、副班長各1人,現(xiàn)要選派5人參加一項社區(qū)活動,要求正、副班長至少1人參加,問共有多少種選派方法?下面是學(xué)生提供的四個計算式,其中錯誤的是( 。
A、
C
1
2
C
4
49
B、
C
5
50
-
C
5
48
C、
C
1
2
C
4
49
-
C
2
2
C
3
48
D、
C
1
2
C
4
48
+
C
2
2
C
3
48
考點:排列、組合的實際應(yīng)用
專題:計算題
分析:根據(jù)題意,利用分類方法來解排列數(shù),用所有的從50人選5個減去不合題意的,可知選項B正確,兩個班長中選一個,余下的49人中選一個,減去重復(fù)的情況知C正確,當(dāng)有一個班長參加和當(dāng)有兩個班長參加得到結(jié)果是選項D,而A的計算公式有重復(fù)的情況,綜合可得答案.
解答: 解:根據(jù)題意,依次分析選項:
對于B:運用的排除法,先在所有的從50人選5個,有C505種情況,再排除其中不合題意即沒有班干部的C485種情況,即有C505-C485種情況,B正確;
對于C:運用的排除法,先兩個班長中選1個,余下的49人中選4個,有C21C494種情況,但其中其中有2個班長參加的C22C483種情況重復(fù)了,則排除其中有2個班長參加情況,即有C21C494-C22C483種情況,可知C正確,
則A中有重復(fù)的情況,故A錯誤;
對于D:運用的分類加法原理,當(dāng)有一個班長參加時,有C21C484種情況,當(dāng)有2個班長參加時,有C22C483種情況,共有C21C484+C22C483種情況,D正確:
故選A.
點評:本題考查排列、組合的應(yīng)用,考查從不同的角度來分析解決問題,平時解題時要注意排除其中重復(fù)的情況,避免選項A的錯誤.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲正弦函數(shù)shx=
ex-e-x
2
和雙曲余弦函數(shù)chx=
ex+e-x
2
與我們學(xué)過的正弦函數(shù)和余弦函數(shù)有許多類似的性質(zhì),請類比正弦函數(shù)和余弦函數(shù)的和角公式,寫出雙曲正弦或雙曲余弦函數(shù)的一個類似的正確結(jié)論
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某算法的流程圖如圖所示,若輸入x=7,y=6,則輸出的有序數(shù)對為( 。
A、(13,14)
B、(12,13)
C、(14,13)
D、(13,12)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若P為△ABC內(nèi)一點,且
PB
+
PC
+2
PA
=
0
,在△ABC內(nèi)隨機(jī)撒一顆豆子,則此豆子落在△PBC內(nèi)的概率為( 。
A、
1
2
B、
1
3
C、
1
4
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

棱長均為3三棱錐S-ABC,若空間一點P滿足
SP
=x
SA
+y
SB
+z
SC
(x+y+z=1)則|
SP
|
的最小值為(  )
A、
6
B、
6
3
C、
3
6
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

坐標(biāo)原點到函數(shù)f(x)=ex+1的圖象在點(1,f(1))處切線y=g(x)的距離為( 。
A、
1
e
B、
1
e2+1
C、
e
e2+1
D、
e2+1
e2+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)z=1-i(i是虛數(shù)單位),則復(fù)數(shù)
2
z
的虛部是(  )
A、1B、-1C、iD、-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩容器中分別盛有兩種濃度的某種溶液300mL,從甲容器中取出100mL溶液,將其倒入乙容器中攪勻,再從乙容器中取出100mL溶液,將其倒入甲容器中攪勻,這稱為是一次調(diào)和,已知第一次調(diào)和后,甲、乙兩種溶液的濃度分別記為:a1=20%,b1=2%,第n次調(diào)和后的甲、乙兩種溶液的濃度分別記為:an,bn
(Ⅰ)請用an,bn分別表示an+1和bn+1;
(Ⅱ)問經(jīng)過多少次調(diào)和后,甲乙兩容器中溶液的濃度之差小于0.1%.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x),若在定義域內(nèi)存在實數(shù)x,使得f(-x)=-f(x),則稱f(x)為“局部奇函數(shù)”.
(1)已知二次函數(shù)f(x)=ax2+4x-a(a∈R),試判斷f(x)是否為“局部奇函數(shù)”?并說明理由;
(2)若f(x)=2x+m是定義在區(qū)間[-1,1]上的“局部奇函數(shù)”,求實數(shù)m的取值范圍;
(3)(文)若f(x)=ex-ex-2m為定義域R上的“局部奇函數(shù)”,求證:若x>1,則ex>x2-2mx+1.

查看答案和解析>>

同步練習(xí)冊答案