若P為△ABC內(nèi)一點,且
PB
+
PC
+2
PA
=
0
,在△ABC內(nèi)隨機撒一顆豆子,則此豆子落在△PBC內(nèi)的概率為(  )
A、
1
2
B、
1
3
C、
1
4
D、
2
3
考點:幾何概型
專題:概率與統(tǒng)計
分析:根據(jù)向量的基本運算,得到P為中線AD的中點,利用幾何概型的概率公式求出相應的面積即可得到結(jié)論.
解答: 解:由
PB
+
PC
+2
PA
=
0
,得
PB
+
PC
=-2
PA
,
設(shè)D是BC的中點,
PB
+
PC
=-2
PA
=2
PD

即P是AD的中點,
∴根據(jù)幾何概型的概率公式可知在△ABC內(nèi)隨機撒一顆豆子,則此豆子落在△PBC內(nèi)的概率為:
S△PBC
S△ABC
=
PD
AD
=
1
2

故選:A.
點評:本題主要考查幾何概型的概率的計算,根據(jù)向量條件得到P的位置是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

變量x,y滿足條件
x+2y-1≥0
x-y+2≥0
2x+y-5≤0
,則3x-2y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l與雙曲線C于A,B兩點(A,B在同一支上),F(xiàn)1,F(xiàn)2為雙曲線的兩個焦點,則F1,F(xiàn)2在( 。
A、以A,B為焦點的橢圓上或線段AB的垂直平分線上
B、以A,B為焦點的雙曲線上或線段AB的垂直平分線上
C、以AB為直徑的圓上或線段AB的垂直平分線上
D、以上說法均不正確

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若α=π2,則α的終邊落在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)是定義在(-∞,0)上的可導函數(shù),其導函數(shù)為f′(x),且有2f(x)+xf′(x)>x2,則不等式(x+2014)2f(x+2014)-4f(-2)>0的解集為( 。
A、(-∞,-2012)
B、(-2012,0)
C、(-∞,-2016)
D、(-2016,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l的參數(shù)方程是
x=t
y=t+1
(t是參數(shù)),以原點為極點,x軸的正半軸為極軸,圓C的極坐標方程為ρ=-6cosθ,則圓心C到直線l的距離為(  )
A、2
B、
2
C、2
2
D、3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某班有50名學生,其中正、副班長各1人,現(xiàn)要選派5人參加一項社區(qū)活動,要求正、副班長至少1人參加,問共有多少種選派方法?下面是學生提供的四個計算式,其中錯誤的是( 。
A、
C
1
2
C
4
49
B、
C
5
50
-
C
5
48
C、
C
1
2
C
4
49
-
C
2
2
C
3
48
D、
C
1
2
C
4
48
+
C
2
2
C
3
48

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知點A(1,
2
)是離心率為
2
2
的橢圓C:
y2
a2
+
x2
b2
=1(a>b>0)上的一點,斜率為
2
的直線BD交橢圓C于B,D兩點,且A、B、D三點互不重合.
(1)求橢圓C的方程;
(2)求證:直線AB,AD的斜率之和為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

己知函數(shù)f(x)=-
1
3
x3+2ax2-3a2x(a∈R且a≠0)

(Ⅰ)當a=-1時,求曲線y=f(x)在(-2,m)處的切線方程:
(Ⅱ)當a>0時,求函數(shù)y=f(x)的單調(diào)區(qū)間和極值;
(Ⅲ)當x∈[2a,2a+2]時,不等式|f′(x)|≤3a恒成立,求a的取值范圍.

查看答案和解析>>

同步練習冊答案