年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
px+1 |
x+1 |
1 |
2 |
n |
cn |
-1 |
anSn2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x | 2 1 |
x | 2 2 |
x | 2 n |
a1 |
c1 |
a2 |
c2 |
a3 |
c3 |
| ||
x2 |
| ||
x3 |
| ||
xn |
| ||
x1 |
P |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年上海市吳淞中學(xué)高三上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題
由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y="f" -1(x)能確定數(shù)列{bn},bn=" f" –1(n),若對于任意nÎN*,都有bn=an,則稱數(shù)列{bn}是數(shù)列{an}的“自反數(shù)列”.
(1)若函數(shù)f(x)=確定數(shù)列{an}的自反數(shù)列為{bn},求an;
(2)已知正數(shù)數(shù)列{cn}的前n項(xiàng)之和Sn=(cn+).寫出Sn表達(dá)式,并證明你的結(jié)論;
(3)在(1)和(2)的條件下,d1=2,當(dāng)n≥2時,設(shè)dn=,Dn是數(shù)列{dn}的前n項(xiàng)之和,且Dn>log a (1-2a)恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西師大附中高三5月模擬考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
若數(shù)列,則稱數(shù)列為“調(diào)和數(shù)列”.已知正項(xiàng)數(shù)列為“調(diào)和數(shù)列”,且,則的最大值是( )
A.10 B.100 C.200 D.400
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年上海市高三上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題
由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f -1(x)能確定數(shù)列{bn},bn= f –1(n),若對于任意nÎN*,都有bn=an,則稱數(shù)列{bn}是數(shù)列{an}的“自反數(shù)列”.
(1)若函數(shù)f(x)=確定數(shù)列{an}的自反數(shù)列為{bn},求an;
(2)已知正數(shù)數(shù)列{cn}的前n項(xiàng)之和Sn=(cn+).寫出Sn表達(dá)式,并證明你的結(jié)論;
(3)在(1)和(2)的條件下,d1=2,當(dāng)n≥2時,設(shè)dn=,Dn是數(shù)列{dn}的前n項(xiàng)之和,且Dn>log a (1-2a)恒成立,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com