對(duì)函數(shù),若存在,使得(其中AB為常數(shù)),則稱(chēng)為“可分解函數(shù)”。
(1)試判斷是否為“可分解函數(shù)”,若是,求出AB的值;若不是,說(shuō)明理由w*w^w.k&s#5@u.c~o*m;
(2)用反證法證明:不是“可分解函數(shù)”;
(3)若是“可分解函數(shù)”,則求a的取值范圍,并寫(xiě)出AB關(guān)于a的相應(yīng)的表達(dá)式。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2+bx+c(a≠0)滿(mǎn)足f(0)=-1,對(duì)任意x∈R都有f(x)≥x-1,且f(-
1
2
+x)=f(-
1
2
-x)

(1)求函數(shù)f(x)的解析式;
(2)是否存在實(shí)數(shù)a,使函數(shù)g(x)=log
1
2
[f(a)]x
在(-∞,+∞)上為減函數(shù)?若存在,求出實(shí)數(shù)a的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知奇函數(shù)f(x)的定義域?yàn)镽,且f(x)在[0,+∞)上是增函數(shù),是否存在實(shí)數(shù)m,使f(cos2θ-3)+f(4m-2mcosθ)>f(0)對(duì)所有θ∈[0,]都成立?若存在,求出符合條件的所有實(shí)數(shù)m的范圍,若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)的定義域?yàn)?img width=16 height=17 src="http://thumb.zyjl.cn/pic1/1899/sx/77/294077.gif">,若存在常數(shù),使對(duì)一切實(shí)數(shù)均成立,則稱(chēng)函數(shù).給出下列函數(shù):

;②;③;④;⑤是定義在上的奇函數(shù),且滿(mǎn)足對(duì)一切實(shí)數(shù)、均有.其中是函數(shù)的序號(hào)為              。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)的定義域?yàn)镽,若存在常數(shù),使對(duì)一切實(shí)數(shù)均成立,則稱(chēng)為“倍約束函數(shù)”.現(xiàn)給出下列函數(shù):①;②;③;④ 是定義在實(shí)數(shù)集R上的奇函數(shù),且對(duì)一切,均有.其中是“倍約束函數(shù)”的序號(hào)是           

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年河北省高三第一次調(diào)研考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

對(duì)于函數(shù),若存在,使,則稱(chēng)的一

個(gè)"不動(dòng)點(diǎn)".已知二次函數(shù)

(1)當(dāng)時(shí),求函數(shù)的不動(dòng)點(diǎn);

(2)對(duì)任意實(shí)數(shù),函數(shù)恒有兩個(gè)相異的不動(dòng)點(diǎn),求的取值范圍;

(3)在(2)的條件下,若的圖象上兩點(diǎn)的橫坐標(biāo)是的不動(dòng)點(diǎn),

兩點(diǎn)關(guān)于直線對(duì)稱(chēng),求的最小值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案