如圖,已知正三棱柱ABCA1B1C1的底面邊長是2,DCC1的中點,直線AD與側面BB1C1C所成的角是45°.

(Ⅰ)求二面角ABDC的大。

(Ⅱ)求點C到平面ABD的距離.

答案:
解析:

  解法一:(Ⅰ)設側棱長為

  ∴  2分

    3分

  過E作EFBD于F,連AE,則AFBD.

  為二面角A-BD-C的平面角  5分

  

    7分

  (Ⅱ)由(Ⅰ)知

  過E作 9分

  11分

   12分

  解法二:

  (Ⅰ)求側棱長部分同解法一.3分

  如圖,建立空間直角坐標系,則

  設是平面ABD的一個法向量.

  由 5分

  而是平面BCD的一個法向量,6分

    7分

    8分

  (Ⅱ)9分

    12分


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,已知正三棱柱ABC-A1B1C1各棱長都為a,P為線段A1B上的動點.
(Ⅰ)試確定A1P:PB的值,使得PC⊥AB;
(Ⅱ)若A1P:PB=2:3,求二面角P-AC-B的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知正三棱柱ABC-A1B1C1的底面邊長為2cm,高位5cm,一質點自A點出發(fā),沿著三棱柱的側面繞行兩周到達A1點的最短路線的長為
13
13
cm.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知正三棱柱ABC-A1B1C1的各條棱長都為a,P為A1B上的點.
(1)試確定
A1P
PB
的值,使得PC⊥AB;
(2)若
A1P
PB
=
2
3
,求二面角P-AC-B的大;
(3)在(2)的條件下,求C1到平面PAC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知正三棱柱ABC-A1B1C1,D是AC的中點,C1DC=600,則異面直線AB1與C1D所成角的余弦值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•重慶三模)如圖,已知正三棱柱ABC-A1B1C1的所有棱長均為a,截面AB1C和A1BC1相交于DE,則三棱錐B-B1DE的體積為
3
48
a3
3
48
a3

查看答案和解析>>

同步練習冊答案