已知橢圓的離心率為,其左、右焦點分別為F1、F2,點P是坐標平面內一點,且(O為坐標原點).
(1)求橢圓C的方程;
(2)過點且斜率為k的動直線l交橢圓于A、B兩點,在y軸上是否存在定點M,使以AB為直徑的圓恒過這個點?若存在,求出M的坐標和△MAB面積的最大值;若不存在,說明理由.
【答案】分析:(1)設P(x,y),F(xiàn)1(-c,0),F(xiàn)2(c,0),由;由.所以c=1,由此能求出橢圓的方程.
(2)動直線l的方程為,由.設A(x1,y1),B(x2,y2).則.由此入手能求出當且僅當時,△MAB面積的最大值.
解答:解:(1)設P(x,y),F(xiàn)1(-c,0),F(xiàn)2(c,0),
則由
,

所以c=1…(2分)
又因為,所以a2=2,b2=1.…(3分)
因此所求橢圓的方程為.…(4分)
(2)動直線l的方程為,


設A(x1,y1),B(x2,y2).
.…(6分)
假設在y上存在定點M(0,m),滿足題設,

=
=
=
=
由假設得對于任意的恒成立,
,
解得m=1.
故在y軸上存在定點M(0,1),
使得以AB為直徑的圓恒過這個點…(10分)
這時,點M到AB的距離,


設2k2+1=t,


所以
當且僅當時,上式等號成立.
因此,△MAB面積的最大值是.…(13分)
點評:通過幾何量的轉化考查用待定系數(shù)法求曲線方程的能力,通過直線與圓錐曲線的位置關系處理,考查學生的運算能力.通過向量與幾何問題的綜合,考查學生分析轉化問題的能力,探究研究問題的能力,并體現(xiàn)了合理消元,設而不解的代數(shù)變形的思想.本題有一定的探索性.綜合性強,難度大,易出錯.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓的離心率為e,兩焦點分別為F1、F2,拋物線C以F1為頂點、F2為焦點,點P為拋物線和橢圓的一個交點,若e|PF2|=|PF1|,則e的值為(  )
A、
1
2
B、
2
2
C、
3
3
D、以上均不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的離心率為
1
2
,焦點是(-3,0),(3,0),則橢圓方程為( 。
A、
x2
36
+
y2
27
=1
B、
x2
36
-
y2
27
=1
C、
x2
27
+
y2
36
=1
D、
x2
27
-
y2
36
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在由圓O:x2+y2=1和橢圓C:
x2
a2
+y2
=1(a>1)構成的“眼形”結構中,已知橢圓的離心率為
6
3
,直線l與圓O相切于點M,與橢圓C相交于兩點A,B.
(1)求橢圓C的方程;
(2)是否存在直線l,使得
OA
OB
=
1
2
OM
2
,若存在,求此時直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知橢圓的離心率為
2
2
,準線方程為x=±8,求這個橢圓的標準方程;
(2)假設你家訂了一份報紙,送報人可能在早上6:30-7:30之間把報紙送到你家,你父親離開家去工作的時間在早上7:00-8:00之間,請你求出父親在離開家前能得到報紙(稱為事件A)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,A,B是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右頂點,M是橢圓上異于A,B的任意一點,已知橢圓的離心率為e,右準線l的方程為x=m.
(1)若e=
1
2
,m=4,求橢圓C的方程;
(2)設直線AM交l于點P,以MP為直徑的圓交MB于Q,若直線PQ恰過原點,求e.

查看答案和解析>>

同步練習冊答案