(本小題12分) 已知二次函數(shù)軸有兩個(gè)交點(diǎn),若,且.
(Ⅰ)求此二次函數(shù)的解析式
(Ⅱ)若在閉區(qū)間的最大值為,求的解析式及其最大值
(Ⅰ)
(Ⅱ),的最大值為4
(I)由題目條件可知,
再根據(jù)韋達(dá)定理可知,,消去x1,x2得到關(guān)于m的不等式求出m值.
(II)在(I)的基礎(chǔ)上,此小題是屬于軸定區(qū)間動(dòng)的問(wèn)題,然后分三種情況討論,求出f(x)的最小值g(t),再根據(jù)求出的分段函數(shù)g(t)的解析式,分段求g(t)的最大值,最終確定g(t)的最大值.
(Ⅰ)
得到,即
(舍去,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233020531429.png" style="vertical-align:middle;" />),
(Ⅱ)的最大值為4
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)
已知函數(shù),設(shè)函數(shù),
(1)若,且函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233524794447.png" style="vertical-align:middle;" />,求的表達(dá)式.
(2)若上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)的單調(diào)增區(qū)間為                    

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的最大值和最小值;   
(2)求實(shí)數(shù)的取值范圍,使在區(qū)間上是單調(diào)函數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分13分)
已知函數(shù)滿足;
(1)若方程有唯一解,求的值;
(2)若函數(shù)在區(qū)間上不是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)在區(qū)間上為增函數(shù),則實(shí)數(shù)的取值范圍是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)y=x2-ax+10在區(qū)間[2,+∞)上單調(diào)遞增,則a的取值范圍是( )
A.(-∞,4]B.(-∞,2]
C.[2,+∞)D.[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知, 若在區(qū)間上的最大值為, 最小值為, 令.
(I) 求的函數(shù)表達(dá)式;
(II) 判斷的單調(diào)性, 并求出的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)的單調(diào)增區(qū)間為_(kāi)________________。

查看答案和解析>>

同步練習(xí)冊(cè)答案