【題目】已知極點(diǎn)與平面直角坐標(biāo)系的原點(diǎn)重合,極軸與軸的正半軸重合,直線的參數(shù)方程為(是參數(shù)),曲線的極坐標(biāo)方程為.
(1)求直線的普通方程與曲線的直角坐標(biāo)方程;
(2)設(shè)直線與曲線交于,兩點(diǎn),點(diǎn)為曲線上一點(diǎn),求使面積取得最大值時(shí)的點(diǎn)坐標(biāo).
【答案】(1);.(2)
【解析】
(1)利用加減相元法把直線的參數(shù)方程化為普通方程,根據(jù)極坐標(biāo)方程與直角方程互化公式把曲線的極坐標(biāo)方程化成直角坐標(biāo)方程;
(2)由題知線段的長度為定值,若使面積取得最大值,只需點(diǎn)到直線的距離最大.根據(jù)橢圓的參數(shù)方程表示點(diǎn)的坐標(biāo),根據(jù)點(diǎn)到直線距離,結(jié)合輔助角公式進(jìn)行求解即可.
(1)直線的參數(shù)方程消參,得普通方程為;
將代入曲線的極坐標(biāo)方程,
得曲線的直角坐標(biāo)方程為.
(2)由題知線段的長度為定值,若使面積取得最大值,只需點(diǎn)到直線的距離最大.
因?yàn)辄c(diǎn)在曲線上,所以設(shè),
則點(diǎn)到直線的距離為
,
其中,.當(dāng)且僅當(dāng)時(shí),等號(hào)成立.
此時(shí),,即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知函數(shù)在區(qū)間上單調(diào)遞減,求實(shí)數(shù)的取值范圍.
(2)已知函數(shù),,討論函數(shù)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】方程x2+x-1=0的解可視為函數(shù)y=x+的圖象與函數(shù)y=的圖象交點(diǎn)的橫坐標(biāo),若x4+ax-4=0的各個(gè)實(shí)根x1,x2,…,xk(k≤4)所對(duì)應(yīng)的點(diǎn)(xi ,)(i=1,2,…,k)均在直線y=x的同側(cè),則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體中,棱的中點(diǎn)為,若光線從點(diǎn)出發(fā),依次經(jīng)三個(gè)側(cè)面,,反射后,落到側(cè)面(不包括邊界),則入射光線與側(cè)面所成角的正切值的范圍是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)是橢圓的左、右焦點(diǎn),點(diǎn)是該橢圓上一點(diǎn),若當(dāng)時(shí),面積達(dá)到最大,最大值為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)為坐標(biāo)原點(diǎn),是否存在過左焦點(diǎn)的直線,與橢圓交于兩點(diǎn),使得的面積為?若存在,求出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知△ABC的面積為
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐的底面是邊長為的菱形,,點(diǎn)E是棱BC的中點(diǎn),,點(diǎn)P在平面ABCD的射影為O,F(xiàn)為棱PA上一點(diǎn).
1求證:平面平面BCF;
2若平面PDE,,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=a1nx﹣ax+1(a∈R且a≠0).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求證:(n≥2,n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)拋物線的焦點(diǎn)為F,點(diǎn)P是半橢圓上的一點(diǎn),過點(diǎn)P作拋物線C的兩條切線,切點(diǎn)分別為A、B,且直線PA、PB分別交y軸于點(diǎn)M、N.
(1)證明:;
(2)求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com