【題目】已知函數(shù)f(x)=lnx,g(x)= ﹣ (x為實(shí)常數(shù)).
(1)當(dāng)a=1時(shí),求函數(shù)φ(x)=f(x)﹣g(x)在x∈[4,+∞)上的最小值;
(2)若方程e2f(x)=g(x)(其中e=2.71828…)在區(qū)間[ ]上有解,求實(shí)數(shù)a的取值范圍.
【答案】
(1)解:當(dāng)a=1時(shí),函數(shù)φ(x)=f(x)﹣g(x)=lnx﹣ + ,
∴φ′(x)= = ;
x∈[4,+∞),∴φ′(x)>0
∴函數(shù)φ(x)=f(x)﹣g(x)在x∈[4,+∞)上單調(diào)遞增
∴x=4時(shí),φ(x)min=2ln2﹣
(2)解:方程e2f(x)=g(x)可化為x2= ﹣ ,∴a= ﹣x3,
設(shè)y= ﹣x3,則y′= ﹣3x2,
∵x∈[ ]
∴函數(shù)在[ ]上單調(diào)遞增,在[ ,1]上單調(diào)遞減
∵x= 時(shí),y= ;x= 時(shí),y= ;x=1時(shí),y= ,
∴y∈[ ]
∴a∈[ ]
【解析】(1)求導(dǎo)數(shù),求得函數(shù)的單調(diào)性,即可求函數(shù)φ(x)=f(x)﹣g(x)在x∈[4,+∞)上的最小值;(2)化簡(jiǎn)方程,分離參數(shù),再構(gòu)建新函數(shù),確定函數(shù)的單調(diào)性,求出函數(shù)的值域,即可求實(shí)數(shù)a的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若 、 是兩個(gè)相交平面,則在下列命題中,真命題的序號(hào)為( )
①若直線 ,則在平面 內(nèi)一定不存在與直線 平行的直線.
②若直線 ,則在平面 內(nèi)一定存在無(wú)數(shù)條直線與直線 垂直.
③若直線 ,則在平面 內(nèi)不一定存在與直線 垂直的直線.
④若直線 ,則在平面 內(nèi)一定存在與直線 垂直的直線.
A.①③
B.②③
C.②④
D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) 有最大值 , ,且 是 的導(dǎo)數(shù).
(Ⅰ)求 的值;
(Ⅱ)證明:當(dāng) , 時(shí), .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的左、右焦點(diǎn)分別為 ,離心率為 ,經(jīng)過(guò)點(diǎn) 且傾斜角為 的直線 交橢圓于 兩點(diǎn).
(1)若 的周長(zhǎng)為16,求直線 的方程;
(2)若 ,求橢圓 的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)是定義域?yàn)椋?,+∞)的單調(diào)函數(shù),若對(duì)任意的x∈(0,+∞),都有 ,且方程|f(x)﹣3|=x3﹣6x2+9x﹣4+a在區(qū)間(0,3]上有兩解,則實(shí)數(shù)a的取值范圍是( )
A.0<a≤5
B.a<5
C.0<a<5
D.a≥5
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x|+|x+1|.
(1)解關(guān)于x的不等式f(x)>3;
(2)若x∈R,使得m2+3m+2f(x)≥0成立,試求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形 中, 分別為 的中點(diǎn),現(xiàn)將 沿 折起,得四棱錐
(1)求證: 平面 ;
(2)若平面 平面 ,求四面體 的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=3ax2+bx-5a+b是偶函數(shù),且其定義域?yàn)閇6a-1,a],則a+b=( )
A.
B.-1
C.1
D.7
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果函數(shù)y=f(x)的導(dǎo)函數(shù)的圖象如圖所示,給出下列判斷:
①函數(shù)y=f(x)在區(qū)間 內(nèi)單調(diào)遞增;
②函數(shù)y=f(x)在區(qū)間 內(nèi)單調(diào)遞減;
③函數(shù)y=f(x)在區(qū)間(4,5)內(nèi)單調(diào)遞增;
④當(dāng)x=2時(shí),函數(shù)y=f(x)有極小值;
⑤當(dāng)x= 時(shí),函數(shù)y=f(x)有極大值.
則上述判斷中正確的是( )
A.①②
B.②③
C.③④⑤
D.③
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com