某單位為了制定節(jié)能減排目標,先調(diào)查了用電量y(單位:度)與氣溫x(單位:℃)之間的關(guān)系,隨機統(tǒng)計了某4天的用電量與當天氣溫,并制作了對照表:
x181310-1
y24343864
由表中數(shù)據(jù),得線性回歸直線方程
y
=-2x+b,當氣溫不低于-5℃時,預測用電量最多為
 
度.
考點:線性回歸方程
專題:計算題,概率與統(tǒng)計
分析:根據(jù)所給的表格做出本組數(shù)據(jù)的樣本中心點,根據(jù)樣本中心點在線性回歸直線上,利用待定系數(shù)法做出a的值,現(xiàn)在方程是一個確定的方程,根據(jù)所給的x的值,代入線性回歸方程,預報要銷售的件數(shù).
解答: 解:由表格表格得
.
x
=
18+13+10-1
4
=10,
.
y
=
24+34+38+64
4
=40,
代入線性回歸直線方程
y
=-2x+b,
∴40=10×(-2)+b,
解得:b=60,
∴y=-2x+60.
當x=-5時,y=-2×(-5)+60=70.
故答案為:70.
點評:本題主要考查線性回歸方程的求解與運用,解題的關(guān)鍵是線性回歸方程經(jīng)過樣本點的中心,同時注意理解線性回歸方程中相關(guān)系數(shù)的意義.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知中心在原點的雙曲線C的右焦點為(2,0),實軸長2
3

(1)求雙曲線的方程
(2)若直線l:y=kx+
2
與雙曲線恒有兩個不同的交點A,B,且∠AOB為銳角(其中O為原點),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
1
a
,
1
b
,
1
c
構(gòu)成公差不為0的等差數(shù)列,求證:a,b,c不能構(gòu)成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin2x+2cos2x-1,x∈R.
(1)求f(x)的單調(diào)增區(qū)間;
(2)若x∈[0,
π
2
],求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖過拋物線y2=4x焦點F的直線與拋物線交于A,B兩點,直線AO交拋物線準線于C點.
(1)求證:BC⊥y軸;
(2)求|AB|+|BC|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓W:
x2
a2
+
y2
b2
=1(a>b>0)的短軸長為2
2
,且斜率為
3
的直線l1過橢圓W的焦點及點(0,-2
3
).
(Ⅰ)求橢圓W的方程;
(Ⅱ)已知直線l2過橢圓W的左焦點F,交橢圓于點P、Q.
(ⅰ)若滿足
OP
OQ
•tan∠POQ=4(O為坐標原點),求△POQ的面積;
(ⅱ)若直線l2與兩坐標軸都不垂直,點M在x軸上,且使MF為∠PMQ的一條角平分線,則稱點M為橢圓W的“特征點”,求橢圓W的特征點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求下列函數(shù)的定義域
(Ⅰ)f(x)=
x-2
x-3
+log3(4-x);
(Ⅱ)f(x)=
1-(
1
3
)x
-
log2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,過其右焦點F2作與x軸垂直的直線l與該橢圓交于A、B兩點,與拋物線y2=4x交于C、D兩點,且
AB
=
3
2
4
CD

(1)求橢圓E的方程;
(2)設(shè)A(-4,0),過點R(3,0)作與x軸不重合的直線l′交橢圓于P、Q兩點,連接AP、AQ分別交直線x=
16
3
于M、N兩點.試問直線MR、NR的斜率之積是否為定值,若是,求出定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若復數(shù)z=i,則z100+z50的值等于
 

查看答案和解析>>

同步練習冊答案