如圖,有一塊半徑為2的半圓形鋼板,現(xiàn)將其裁剪為等腰梯形ABCD的形狀.它的下底AB是圓O的直徑,上底CD的端點(diǎn)在圓周上.
(1)寫(xiě)出這個(gè)梯形的周長(zhǎng)y與腰長(zhǎng)x之間的函數(shù)關(guān)系式,并求出定義域;
(2)求y的最大值.
分析:(1)由于AB是圓O的直徑,所以三角形ABD是直角三角形,連BD,過(guò)D作DE⊥AB于E,則由射影定理可知AD2=AE•AB,從而可用腰長(zhǎng)表示上底長(zhǎng),進(jìn)而可求梯形的周長(zhǎng)y與腰長(zhǎng)x之間的函數(shù)關(guān)系式,根據(jù)上底長(zhǎng),可確定函數(shù)的定義域;
(2)利用配方法可知函數(shù)函數(shù)在(0,2)上單調(diào)遞增,在(2,2
2
)
單調(diào)遞減,由此可求周長(zhǎng)y的最大值.
解答:解:(1)連BD,過(guò)D作DE⊥AB于E,
∵AB是圓O的直徑,∴三角形ABD是直角三角形
∴根據(jù)射影定理有:AD2=AE•AB,
∵AD=x
AE=
x2
4
,又是等腰梯形
CD=4-2×
x2
4
=4-
x2
2

故梯形的周長(zhǎng)y=4+2x+4-
x2
2
=-
x2
2
+2x+8

x>0,4-
x2
2
>0

0<x<2
2
.…(6分)
(2)由(1)得y=-
x2
2
+2x+8=-
1
2
(x-2)2+10
,
∵函數(shù)在(0,2)上單調(diào)遞增,在(2,2
2
)
單調(diào)遞減,
∴當(dāng)x=2時(shí),ymax=10.…(12分)
點(diǎn)評(píng):本題以半圓為載體,考查函數(shù)模型的構(gòu)建,關(guān)鍵是腰長(zhǎng)表示上底長(zhǎng),同時(shí)考查二次函數(shù)的最值求法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,有一塊半徑為2的半圓形鋼板,計(jì)劃剪裁成等腰梯形ABCD的形狀,它的下底AB是圓O的直徑,上底CD的端點(diǎn)在圓周上.
(1)求梯形ABCD的周長(zhǎng)y與腰長(zhǎng)x間的函數(shù)解析式,并求出它的定義域;
(2)求梯形ABCD的周長(zhǎng)y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,有一塊半徑為2的半圓形鋼板,計(jì)劃剪裁成等腰梯形ABCD的形狀,它的下底AB是圓的直徑,上底CD的端點(diǎn)在圓周上,寫(xiě)出這個(gè)梯形周長(zhǎng)y和腰長(zhǎng)x間的函數(shù)解析式,定義域,并求出周長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省揭陽(yáng)市惠來(lái)一中高一(上)9月月考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,有一塊半徑為2的半圓形鋼板,計(jì)劃剪裁成等腰梯形ABCD的形狀,它的下底AB是圓O的直徑,上底CD的端點(diǎn)在圓周上.
(1)求梯形ABCD的周長(zhǎng)y與腰長(zhǎng)x間的函數(shù)解析式,并求出它的定義域;
(2)求梯形ABCD的周長(zhǎng)y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省肇慶市高一(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,有一塊半徑為2的半圓形鋼板,計(jì)劃剪裁成等腰梯形ABCD的形狀,它的下底AB是圓O的直徑,上底CD的端點(diǎn)在圓周上.
(1)求梯形ABCD的周長(zhǎng)y與腰長(zhǎng)x間的函數(shù)解析式,并求出它的定義域;
(2)求梯形ABCD的周長(zhǎng)y的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案