【題目】已知函數(shù)f(x)=x﹣alnx(a∈R)
(1)當(dāng)a=2時(shí),求曲線y=f(x)在點(diǎn)A(1,f(1))處的切線方程;
(2)求函數(shù)f(x)的單調(diào)區(qū)間和極值.

【答案】
(1)解:函數(shù)f(x)的定義域?yàn)椋?,+∞),f′(x)=1﹣

當(dāng)a=2時(shí),f(x)=x﹣2lnx,f′(x)=1﹣ (x>0),

因而f(1)=1,f′(1)=﹣1,

所以曲線y=f(x)在點(diǎn)A(1,f(1))處的切線方程為y﹣1=﹣(x﹣1),

即x+y﹣2=0


(2)解:由f′(x)=1﹣ = ,x>0知:

①當(dāng)a≤0時(shí),f′(x)>0,函數(shù)f(x)為(0,+∞)上的增函數(shù),函數(shù)f(x)無(wú)極值;

②當(dāng)a>0時(shí),由f′(x)=0,解得x=a.

又當(dāng)x∈(0,a)時(shí),f′(x)<0,當(dāng)x∈(a,+∞)時(shí),f′(x)>0.

從而函數(shù)f(x)在x=a處取得極小值,且極小值為f(a)=a﹣alna,無(wú)極大值.

綜上,當(dāng)a≤0時(shí),函數(shù)f(x)無(wú)極值;

當(dāng)a>0時(shí),函數(shù)f(x)在x=a處取得極小值a﹣alna,無(wú)極大值


【解析】(1)把a(bǔ)=2代入原函數(shù)解析式中,求出函數(shù)在x=1時(shí)的導(dǎo)數(shù)值,直接利用直線方程的點(diǎn)斜式寫(xiě)直線方程;(2)求出函數(shù)的導(dǎo)函數(shù),由導(dǎo)函數(shù)可知,當(dāng)a≤0時(shí),f′(x)>0,函數(shù)在定義域(0,+∝)上單調(diào)遞增,函數(shù)無(wú)極值,當(dāng)a>0時(shí),求出導(dǎo)函數(shù)的零點(diǎn),由導(dǎo)函數(shù)的零點(diǎn)對(duì)定義域分段,利用原函數(shù)的單調(diào)性得到函數(shù)的極值.
【考點(diǎn)精析】利用函數(shù)的極值與導(dǎo)數(shù)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線 為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為

1)分別求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

2)設(shè)直線交曲線 兩點(diǎn),交曲線, 兩點(diǎn),求線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓心為C的圓過(guò)點(diǎn)A(0,﹣6)和B(1,﹣5),且圓心在直線l:x﹣y+1=0上.
(1)求圓心為C的圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)M(2,8)作圓的切線,求切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】f(x)是定義在(0,+∞)上的減函數(shù),滿(mǎn)足f(x)+f(y)=f(xy).
(1)求證: ;
(2)若f(4)=﹣4,解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l:2x+y﹣1=0與圓C:x2+y2=1相交于A,B兩點(diǎn).
(1)求△AOB的面積(O為坐標(biāo)原點(diǎn));
(2)設(shè)直線ax+by=1與圓C:x2+y2=1相交于M,N兩點(diǎn)(其中a,b是實(shí)數(shù)),若OM⊥ON,試求點(diǎn)P(a,b)與點(diǎn)Q(0,1)距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正四棱錐S﹣ABCD中,E,M,N分別是BC,CD,SC的中點(diǎn),動(dòng)點(diǎn)P在線段MN上運(yùn)動(dòng)時(shí),下列四個(gè)結(jié)論中恒成立的個(gè)數(shù)為( )
(1)EP⊥AC;
(2)EP∥BD;
(3)EP∥面SBD;
(4)EP⊥面SAC.

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】銳角三角形ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,a=2bsinA,則cosA+sinC的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年空氣質(zhì)量逐步霧霾天氣現(xiàn)象增多,大氣污染危害加重,大氣污染可引起心悸,呼吸困難等心肺疾病,為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機(jī)的對(duì)入院50人進(jìn)行了問(wèn)卷調(diào)查得到了如下的列聯(lián)表:

患心肺疾病

不患心肺疾病

合計(jì)

5

10

合計(jì)

50

已知在全部50人中隨機(jī)抽取1人,抽到患心肺疾病的人的概率為.

(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整,并判斷是否有99.5%的把握認(rèn)為患心肺疾病與性別有關(guān)?說(shuō)明你的理由;

(2)已知在患心肺疾病的10位女性中,有3位又患胃病,現(xiàn)在從患心肺疾病的10位女性中,選出3名進(jìn)行其他方面的排查,記選出患胃病的女性人數(shù)為,求的分布列、數(shù)學(xué)期望及方差,下面的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), 是自然對(duì)數(shù)的底數(shù)).

(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案