【題目】已知圓心為C的圓過點A(0,﹣6)和B(1,﹣5),且圓心在直線l:x﹣y+1=0上.
(1)求圓心為C的圓的標準方程;
(2)過點M(2,8)作圓的切線,求切線方程.
【答案】
(1)解:設所求的圓的方程為(x﹣a)2+(y﹣b)2=r2
依題意得:
解得:a=﹣3,b=﹣2,r2=25
所以所求的圓的方程為:(x+3)2+(y+2)2=25
(2)解:設所求的切線方程的斜率為k,則切線方程為y﹣8=k(x﹣2),即kx﹣y﹣2k+8=0
又圓心C(﹣3,﹣2)到切線的距離
又由d=r,即 ,解得
∴所求的切線方程為3x﹣4y+26=0
若直線的斜率不存在時,即x=2也滿足要求.
∴綜上所述,所求的切線方程為x=2或3x﹣4y+26=0
【解析】(1)設圓的標準方程,用待定系數(shù)的方法,求得圓的方程;(2)點斜式設出直線方程,圓心到切線的距離等于半徑,得到方程,注意斜率不存在的情況.
科目:高中數(shù)學 來源: 題型:
【題目】已知四棱錐P﹣ABCD的底面為矩形,PA⊥平面ABCD,PA=AB=2,AD=1,點M為PC中點,過A、M的平面α與此四棱錐的面相交,交線圍成一個四邊形,且平面α⊥平面PBC.
(1)在圖中畫出這個四邊形(不必說出畫法和理由);
(2)求平面α與平面ABM所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣(m+1)x+m,g(x)=﹣(m+4)x﹣4+m,m∈R.
(1)比較f(x)與g(x)的大;
(2)解不等式f(x)≤0.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 若Sn=2an﹣3n.
(Ⅰ)求證:數(shù)列{an+3}是等比數(shù)列,并求出數(shù)列{an}的通項an;
(Ⅱ)求數(shù)列{nan}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動點滿足: .
(1)求動點的軌跡的方程;
(2)設過點的直線與曲線交于兩點,點關于軸的對稱點為(點與點不重合),證明:直線恒過定點,并求該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,異面直線AD1與BD所成的角為;若AB的中點為M,DD1的中點為N,則異面直線B1M與CN所成的角為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x﹣alnx(a∈R)
(1)當a=2時,求曲線y=f(x)在點A(1,f(1))處的切線方程;
(2)求函數(shù)f(x)的單調區(qū)間和極值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) 有一個零點為4,且滿足.
(1)求實數(shù)和的值;
(2)試問:是否存在這樣的定值,使得當變化時,曲線在點處的切線互相平行?若存在,求出的值;若不存在,請說明理由;
(3)討論函數(shù)在上的零點個數(shù).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com