【題目】已知函數(shù)y=f(x),若在定義域內(nèi)存在x0 , 使得f(﹣x0)=﹣f(x0)成立,則稱x0為函數(shù)f(x)的局部對稱點.
(I)若a∈R且a≠0,求函數(shù)f(x)=ax2+x﹣a的“局部對稱點”;
(II)若函數(shù)f(x)=4x﹣m2x+1+m2﹣3在R上有局部對稱點,求實數(shù)m的取值范圍.

【答案】解:(Ⅰ)由f(x)=ax2+x﹣a,得f(﹣x)=ax2﹣x﹣a,代入f(﹣x)=﹣f(x),得ax2+x﹣a+ax2﹣x﹣a=0,即ax2﹣a=0(a≠0),
∴x=±1,
∴函數(shù)f(x)=ax2+x﹣a的局部對稱點是±1;
(Ⅱ)∵f(﹣x)=4x﹣m2x+1+m2﹣3,由f(﹣x)=﹣f(x),
得4x﹣m2x+1+m2﹣3=﹣(4x﹣m2x+1+m2﹣3),
于是4x+4x﹣2m(2x+2x)+2(m2﹣3)=0①在R上有解,
令t=2x+2x , (t≥2),則4x+4x=t2﹣2,
∴方程①變?yōu)閠2﹣2mt+2m2﹣8=0在區(qū)間[2,+∞)內(nèi)有解,
令g(t)=t2﹣2mt+2m2﹣8,由題意需滿足以下條件:
g(2)≤0或 ,
解得
綜上
【解析】(Ⅰ)直接由奇函數(shù)的定義列式求得x值得答案;(Ⅱ)由f(﹣x)=﹣f(x),可得4x+4x﹣2m(2x+2x)+2(m2﹣3)=0在R上有解,令t=2x+2x , (t≥2),則4x+4x=t2﹣2,轉(zhuǎn)化為在區(qū)間[2,+∞)內(nèi)有解,令g(t)=t2﹣2mt+2m2﹣8,由題意需滿足以下條件:g(2)≤0或 ,求解得答案.
【考點精析】利用函數(shù)的定義域及其求法對題目進行判斷即可得到答案,需要熟知求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數(shù);②是分式函數(shù)時,定義域是使分母不為零的一切實數(shù);③是偶次根式時,定義域是使被開方式為非負值時的實數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負)指數(shù)冪的底數(shù)不能為零.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R上的可導函數(shù)f(x)的導函數(shù)為f′(x),滿足f′(x)<f(x),且f(﹣x)=f(2+x),f(2)=1,則不等式f(x)<ex的解集為(
A.(﹣2,+∞)
B.(0,+∞)
C.(1,+∞)
D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=2lnx+ . (Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)如果對所有的x≥1,都有f(x)≤ax,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校開展“讀好書,好讀書”活動,要求本學期每人至少讀一本課外書,該校高一共有100名學生,他們本學期讀課外書的本數(shù)統(tǒng)計如圖所示. (Ⅰ)求高一學生讀課外書的人均本數(shù);
(Ⅱ)從高一學生中任意選兩名學生,求他們讀課外書的本數(shù)恰好相等的概率;
(Ⅲ)從高一學生中任選兩名學生,用ζ表示這兩人讀課外書的本數(shù)之差的絕對值,求隨機變量ζ的分布列及數(shù)學期望E.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設向量 =(a1 , a2), =(b1 , b2),定義一種向量運算 =(a1b1 , a2b2),已知向量 =(2, ), =( ,0),點P(x′,y′)在y=sinx的圖象上運動.點Q(x,y)是函數(shù)y=f(x)圖象上的動點,且滿足 +n(其中O為坐標原點),則函數(shù)y=f(x)的值域是(
A.[﹣ , ]
B.
C.[﹣1,1]
D.(﹣1,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=f(x+1)定義域是[﹣2,3],則y=f(2x﹣1)的定義域(
A.
B.[﹣1,4]
C.[﹣5,5]
D.[﹣3,7]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在淘寶網(wǎng)上,某店鋪專賣孝感某種特產(chǎn).由以往的經(jīng)驗表明,不考慮其他因素,該特產(chǎn)每日的銷售量y(單位:千克)與銷售價格x(單位:元/千克,1<x≤5)滿足:當1<x≤3時,y=a(x﹣3)2+ ,(a,b為常數(shù));當3<x≤5時,y=﹣70x+490.已知當銷售價格為2元/千克時,每日可售出該特產(chǎn)600千克;當銷售價格為3元/千克時,每日可售出150千克.
(1)求a,b的值,并確定y關于x的函數(shù)解析式;
(2)若該特產(chǎn)的銷售成本為1元/千克,試確定銷售價格x的值,使店鋪每日銷售該特產(chǎn)所獲利潤f(x)最大(x精確到0.1元/千克).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,三邊a,b,c所對應的角分別是A,B,C,已知a,b,c成等比數(shù)列.
(1)若 + = ,求角B的值;
(2)若△ABC外接圓的面積為4π,求△ABC面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ex(x2+ax+a)(a∈R) (Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若a=﹣1,判斷f(x)是否存在最小值,并說明理由.

查看答案和解析>>

同步練習冊答案