5.若函數(shù)y=x3-$\frac{3}{2}$x2+a在[-1,1]上有最大值3,則該函數(shù)在[-1,1]上的最小值是( 。
A.-$\frac{1}{2}$B.0C.$\frac{1}{2}$D.1

分析 求函數(shù)的導數(shù),利用函數(shù)的最大值求出a的值即可得到結論.

解答 解:函數(shù)的導數(shù)f′(x)=3x2-3x=3x(x-1),
由f′(x)>0得x>1或x<0,此時函數(shù)遞增,
由f′(x)<0得0<x<1,此時函數(shù)遞減,
故x=0時,函數(shù)f(x)取得極大值,同時也是在[-1,1]上的最大值,
即f(0)=a=3,
f(1)=1-$\frac{3}{2}$+3=$\frac{5}{2}$.
f(-1)=-1-$\frac{3}{2}$+3=$\frac{1}{2}$,
∴f(-1)<f(1),
即函數(shù)在[-1,1]上的最小值是$\frac{1}{2}$,
故選:C.

點評 本題主要考查函數(shù)在閉區(qū)間上的最值問題,根據(jù)導數(shù)先求出a的值是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

15.有三箱粉筆.每箱中有100盒,其中有一盒是次品,從這三箱粉筆中各抽出一盒,則這三盒中至少有一盒是次品的概率是$\frac{29701}{1000000}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.己知θ∈(0,π),且滿足sinθ+cosθ=$\frac{1}{3}$,則sinθ-cosθ等于(  )
A.-$\frac{\sqrt{17}}{3}$B.-$\frac{1}{3}$C.$\frac{1}{3}$D.$\frac{\sqrt{17}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.直線$x+y+\sqrt{3}=0$的傾斜角是( 。
A.$\frac{π}{4}$B.$\frac{3π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.設非零向量$\overrightarrow{a}$與$\overrightarrow$的夾角是$\frac{5π}{6}$,且|$\overrightarrow{a}$|=|$\overrightarrow{a}+\overrightarrow$|,則$\frac{|\overrightarrow{a}+t\overrightarrow|}{|\overrightarrow|}$(t∈R)的最小值是$\frac{\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.下列命題中
①復數(shù)a+bi與c+di相等的充要條件是a=c且b=d   
②任何復數(shù)都不能比較大小   
③若$\overrightarrow{{z}_{1}}$=$\overrightarrow{{z}_{2}}$,則|$\overrightarrow{{z}_{1}}$|=|$\overrightarrow{{z}_{2}}$|
④若|$\overrightarrow{{z}_{1}}$|=|$\overrightarrow{{z}_{2}}$|,則$\overrightarrow{{z}_{1}}$=$\overrightarrow{{z}_{2}}$或$\overrightarrow{{z}_{1}}$=-$\overrightarrow{{z}_{2}}$.
錯誤的命題的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.在數(shù)列{an}中,a1=1,a2=6,點(an-an-1,an+1)在函數(shù)f(x)=4x的圖象上
(1)求證:數(shù)列{an+1-2an}是等比數(shù)列,并求出數(shù)列{an}的通項公式;
(2)數(shù)列{an}的前n項和為Sn,求證:Sn<(n-1)•2n+1+2;
(3)若Cn=3n-λ•(-1)n•$\frac{a_n}{{n-\frac{1}{2}}}$,(n∈N*,λ為非零實數(shù)),對任意n∈N*,Cn+1>Cn恒成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.(1)化簡:$\frac{{cos(\frac{π}{2}+α)sin(-π-α)}}{{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}}$
(2)已知tan(2π-α)=3,求sin2α+sinαcosα

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知角α的終邊過點P(4,-3).
(Ⅰ)寫出sinα、cosα、tanα值;
(Ⅱ)求$\frac{{sin(π+α)+2sin(\frac{π}{2}-α)}}{2cos(π-α)}$的值.

查看答案和解析>>

同步練習冊答案