14.(1)化簡:$\frac{{cos(\frac{π}{2}+α)sin(-π-α)}}{{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}}$
(2)已知tan(2π-α)=3,求sin2α+sinαcosα

分析 (1)原式利用誘導(dǎo)公式化簡,約分即可得到結(jié)果;
(2)已知等式利用誘導(dǎo)公式化簡求出tanα的值,原式利用同角三角函數(shù)間基本關(guān)系變形后代入計(jì)算即可求出值.

解答 解:(1)原式=$\frac{-cosα(-sin(π+α))}{{cos(-\frac{π}{2}-α)sin(\frac{π}{2}+α)}}$=$\frac{-cosαsinα}{{cos(\frac{π}{2}+α)cosα}}$=$\frac{-cosαsinα}{-sinαcosα}$=1;
(2)由tan(2π-α)=3,得tanα=-3,
則sin2α+sinαcosα=$\frac{{{{sin}^2}α+sinαcosα}}{{{{sin}^2}α+{{cos}^2}α}}$=$\frac{{{{tan}^2}α+tanα}}{{{{tan}^2}α+1}}$=$\frac{{{{({-3})}^2}-3}}{{{{({-3})}^2}+1}}$=$\frac{3}{5}$.

點(diǎn)評 此題考查了運(yùn)用誘導(dǎo)公式化簡求值,熟練掌握誘導(dǎo)公式是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=aln x+1(a>0).
(1)求函數(shù)φ(x)=f(x)-a(1-$\frac{1}{x}$)單調(diào)區(qū)間;
(2)在區(qū)間(1,e)上f(x)>x恒成立,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若函數(shù)y=x3-$\frac{3}{2}$x2+a在[-1,1]上有最大值3,則該函數(shù)在[-1,1]上的最小值是( 。
A.-$\frac{1}{2}$B.0C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知過點(diǎn)A(1,0)的直線l與曲線C:$\left\{\begin{array}{l}{x=2+2cosα}\\{y=1+2sinα}\end{array}\right.$(α是參數(shù))交于P,Q兩點(diǎn)
(1)求直線PQ的參數(shù)方程
(2)求|AP|+|AQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.不等式x2-x-2≤0解集為A,函數(shù)y=lg(x-1)的定義域?yàn)锽,則A∩B=(  )
A.(1,2)B.[1,2]C.[1,2)D.(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知a>0,b>0,$\frac{2}{a}$+$\frac{1}$=1,則2a+b的最小值為( 。
A.10B.9C.8D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若向量$\overrightarrow{m}$=(2,-1),則|$\overrightarrow{m}$|=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.過點(diǎn)(1,0),且與直線2x+y-10=0的斜率相同的直線方程是2x+y-2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=(m•2x+2-x)cosx(x∈R)是奇函數(shù),則實(shí)數(shù)m=-1.

查看答案和解析>>

同步練習(xí)冊答案