15.△ABC中,角A,B,C所對(duì)邊的長(zhǎng)分別為a,b,c,滿足a2+b2=2c2,則cosC的最小值為(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

分析 通過(guò)余弦定理求出cosC的表達(dá)式,利用基本不等式求出cosC的最小值.

解答 解:因?yàn)閍2+b2=2c2,
所以由余弦定理a2+b2-c2=2abcosC,
可知,c2=2abcosC,
cosC=$\frac{{c}^{2}}{2ab}$=$\frac{1}{2}$•$\frac{{a}^{2}+^{2}}{2ab}$≥$\frac{1}{2}$•$\frac{2ab}{2ab}$=$\frac{1}{2}$.
當(dāng)且僅當(dāng)a=b時(shí),取得等號(hào),
則cosC的最小值為$\frac{1}{2}$.
故選:C.

點(diǎn)評(píng) 本題考查三角形中余弦定理的應(yīng)用,考查基本不等式的應(yīng)用,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知$\overrightarrow{a}$,$\overrightarrow$為非零向量,根據(jù)平面向量數(shù)量積的定義證明向量性質(zhì):|$\overrightarrow{a}$•$\overrightarrow$|≤|$\overrightarrow{a}$||$\overrightarrow$|,并用該性質(zhì)證明不等式:(mp+nq)2≤(m2+n2)(p2+q2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.定義:$|\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{{a}_{4}}\end{array}|$=a1a4-a2a3,若函數(shù)f(x)=$|\begin{array}{l}{\sqrt{3}}&{1}\\{cosx}&{sinx}\end{array}|$,將其圖象向左平移m(m>0)個(gè)單位長(zhǎng)度后,所得到的圖象關(guān)于y軸對(duì)稱,則m的最小值是(  )
A.$\frac{π}{3}$B.$\frac{2}{3}$πC.$\frac{π}{6}$D.$\frac{5}{6}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若直線x+2y+m=0,按向量$\overrightarrow a=(-1,-2)$平移后與圓C:x2+y2+2x-4y=0相切,則實(shí)數(shù)m的值為-13或-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若復(fù)數(shù)z滿足z(1+i)=4-2i(i為虛數(shù)單位),則|z|=(  )
A.$\sqrt{10}$B.$\sqrt{5}$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)A={0,1,4},B={1,x2},若B⊆A,則x=(  )
A.0B.-2C.0或-2D.0或±2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知點(diǎn)P(a+b,a-b)在不等式組$\left\{{\begin{array}{l}{x-2y+2≥0}\\{y≥|x|}\end{array}}\right.$表示的區(qū)域內(nèi),則2a+b的最大值為( 。
A.$-\frac{2}{3}$B.0C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)函數(shù)f(x)=x2+ax-blnx,
(1)若y=f(x)在(1,f(1))處的切線方程為y=2x,求a,b的值.
(2)若b=1,令g(x)=$\frac{f(x)}{{e}^{x}}$,若函數(shù)g(x)在區(qū)間(0,1]上是減函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.給出兩個(gè)命題:
命題甲:關(guān)于x的不等式x2+(a-1)x+a2≤0的解集為∅,
命題乙:函數(shù)y=(2a2-a)x為增函數(shù).
若命題甲的否定與命題乙中有且只有一個(gè)是真命題,則實(shí)數(shù)a的取值范圍是a>1或a<-1或-$\frac{1}{2}$≤a≤$\frac{1}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案