【題目】已知拋物線:(),圓:(),拋物線上的點(diǎn)到其準(zhǔn)線的距離的最小值為.
(1)求拋物線的方程及其準(zhǔn)線方程;
(2)如圖,點(diǎn)是拋物線在第一象限內(nèi)一點(diǎn),過(guò)點(diǎn)P作圓的兩條切線分別交拋物線于點(diǎn)A,B(A,B異于點(diǎn)P),問(wèn)是否存在圓使AB恰為其切線?若存在,求出r的值;若不存在,說(shuō)明理由.
【答案】(1)的方程為,準(zhǔn)線方程為.(2)存在,
【解析】
(1)由得到p即可;
(2)設(shè),利用點(diǎn)斜式得到PA的的方程為,由到PA的距離為半徑可得,同理,同理寫(xiě)出直線AB的方程,利用點(diǎn)到直線AB的距離為半徑建立方程即可.
解:(1)由題意得,解得,
所以拋物線的方程為,準(zhǔn)線方程為.
(2)由(1)知,.
假設(shè)存在圓使得AB恰為其切線,設(shè),,
則直線PA的的方程為,即.
由點(diǎn)到PA的距離為r,得,
化簡(jiǎn),得,
同理,得.
所以,是方程的兩個(gè)不等實(shí)根,故,.
易得直線AB的方程為,
由點(diǎn)到直線AB的距離為r,得,
所以,
于是,,
化簡(jiǎn),得,即.
經(jīng)分析知,,因此.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)設(shè)函數(shù),求函數(shù)的極值;
(2)若在上存在一點(diǎn),使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若無(wú)窮數(shù)列滿足:,且對(duì)任意的,(,,,)都有,則稱數(shù)列為“G”數(shù)列.
(1)已知等比數(shù)列的通項(xiàng)為,證明:是“G”數(shù)列;
(2)記數(shù)列的前n項(xiàng)和為且有,若對(duì)每一個(gè)取,中的較小者組成新的數(shù)列,若數(shù)列為“G”數(shù)列,求實(shí)數(shù)的取值范圍?
(3)若數(shù)列是“G”數(shù)列,且數(shù)列的前n項(xiàng)之積滿足,求證:數(shù)列是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)為,過(guò)點(diǎn)的直線交拋物線于和兩點(diǎn).
(1)當(dāng)時(shí),求直線的方程;
(2)若過(guò)點(diǎn)且垂直于直線的直線與拋物線交于兩點(diǎn),記與的面積分別為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓:的右焦點(diǎn)為,右頂點(diǎn)為,已知橢圓離心率為,過(guò)點(diǎn)且與軸垂直的直線被橢圓截得的線段長(zhǎng)為3.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)過(guò)點(diǎn)的直線與橢圓交于點(diǎn)(不在軸上),垂直于的直線與交于點(diǎn),與軸交于點(diǎn),若,且,求直線斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某省確定從2021年開(kāi)始,高考采用“”的模式,取消文理分科,即“3”包括語(yǔ)文、數(shù)學(xué)、外語(yǔ),為必考科目;“1”表示從物理、歷史中任選一門(mén);“2”則是從生物、化學(xué)、地理、政治中選擇兩門(mén),共計(jì)六門(mén)考試科目.某高中從高一年級(jí)2000名學(xué)生(其中女生900人)中,采用分層抽樣的方法抽取名學(xué)生進(jìn)行調(diào)查.
(1)已知抽取的名學(xué)生中含男生110人,求的值及抽取到的女生人數(shù);
(2)學(xué)校計(jì)劃在高二上學(xué)期開(kāi)設(shè)選修中的“物理”和“歷史”兩個(gè)科目,為了了解學(xué)生對(duì)這兩個(gè)科目的選課情況,對(duì)在(1)的條件下抽取到的名學(xué)生進(jìn)行問(wèn)卷調(diào)杳(假定每名學(xué)生在這兩個(gè)科目中必須洗擇一個(gè)科目且只能選擇一個(gè)科目).下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表,請(qǐng)將列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為選擇科目與性別有關(guān)?說(shuō)明你的理由;
性別 | 選擇物理 | 選擇歷史 | 總計(jì) |
男生 | 50 | ||
女生 | 30 | ||
總計(jì) |
(3)在(2)的條件下,從抽取的選擇“物理”的學(xué)生中按分層抽樣抽取6人,再?gòu)倪@6名學(xué)生中抽取2人,對(duì)“物理”的選課意向作深入了解,求2人中至少有1名女生的概率.
附:,其中.
0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時(shí),求滿足不等式組的的取值范圍;
(2)當(dāng)時(shí),不等式恒成立.求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),曲線的方程為.以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求直線l和曲線的極坐標(biāo)方程;
(2)曲線分別交直線l和曲線于點(diǎn)A,B,求的最大值及相應(yīng)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù),).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求的普通方程和的參數(shù)方程;
(2)若直線與曲線相交于兩點(diǎn),且的面積為,求.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com