以下莖葉圖記錄了甲、乙兩組各四名同學的植樹棵數(shù),乙組記錄中有一個數(shù)據(jù)模糊,無法確認,在圖中以X表示.

(1)如果X=8,求乙組同學植樹棵數(shù)的平均數(shù);

(2) 記甲組四名同學為A1,A2,A3,A4,乙組四名同學為B1,B2,B3,B4,如果X=9,分別從甲、乙兩組中隨機選取一名同學,列舉這兩名同學的植樹總棵數(shù)為19的所有情形并求該事件的概率.

 

【答案】

 (1) ;  (2) P(C)=.

【解析】

試題分析: (1)當X=8時,由莖葉圖可知,乙組同學的植樹棵數(shù)是:8,8,9,10.

所以平均數(shù)為;                 (4分)

(2)所有可能的結果有16個,它們是:

(A1,B1),(A1,B2),(A1,B3),(A1,B4),

(A2,B1),(A2,B2),(A2,B3),(A2,B4),

(A3,B1),(A3,B2),(A3,B3),(A3,B4),

(A4,B1),(A4,B2),(A4,B3),(A4,B4).             (8分)

用C表示:“選出的兩名同學的植樹總棵數(shù)為19”這一事件,則C中的結果有4個,它們是:(A1,B4),(A2,B4),(A3,B2),(A4,B2),故所求概率為P(C)=.         (12分)

考點:本題主要考查莖葉圖,平均數(shù),古典概型概率的計算。

點評:典型題,統(tǒng)計中的抽樣方法,頻率直方圖,平均數(shù)、方差計算,概率計算及分布列問題,是高考必考內(nèi)容及題型。古典概型概率的計算問題,關鍵是明確基本事件數(shù),往往借助于“樹圖法”,做到不重不漏。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

以下莖葉圖記錄了甲、乙兩組四名同學的植樹棵數(shù).乙組記錄中有一個數(shù)據(jù)模糊,無法確認,在圖中以X表示.
(1)如果X=8,求乙組同學植樹棵樹的平均數(shù)和方差;
(2)如果X=9,分別從甲、乙兩組中隨機選取一名同學,求這兩名同學的植樹總棵樹為17的概率.
(注:方差s2=
1
n
[(x1-
.
x
)2+(x2-
.
x
)2+…+(xn-
.
x
)2]
,其中
.
x
為x1,x2,…,xn的平均數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以下莖葉圖記錄了甲、乙兩組各四名同學的植樹棵數(shù).乙組記錄中有一個數(shù)據(jù)模糊,無法確認,在圖中以X表示.
(Ⅰ)求甲組同學植樹棵數(shù)的平均數(shù);
(Ⅱ)若乙組同學植樹棵數(shù)的平均數(shù)為9,求乙組同學植樹棵數(shù)的方差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以下莖葉圖記錄了甲、乙兩組五名同學的植樹棵數(shù),乙組記錄中有一個數(shù)據(jù)模糊無法確認,在圖中以X表示.
(Ⅰ)如果X=7,求乙組同學植樹棵數(shù)的平均數(shù)和方差;
(Ⅱ)如果X=8,分別從甲、乙兩組中隨機選取一名同學,求這兩名同學的植樹總棵數(shù)為18或19的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•順義區(qū)二模)以下莖葉圖記錄了甲、乙兩組各四名工人1天加工的零件數(shù),則甲組工人1天每人加工零件的平均數(shù)為
20
20
;若分別從甲、乙兩組中隨機選取一名工人,則這兩名工人加工零件的總數(shù)超過了38的概率為
7
16
7
16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以下莖葉圖記錄了甲乙兩組各五名學生在一次英語聽力測試中的成績(單位:分)精英家教網(wǎng)
已知甲組數(shù)據(jù)的中位數(shù)為15,乙組數(shù)據(jù)的平均數(shù)為16.8,則x,y的值分別為( 。
A、5,2B、5,5C、8,5D、8,8

查看答案和解析>>

同步練習冊答案