已知點P(x1,y1),Q(x2,y2)(x1≠x2)是函數(shù)f(x)=x3+ax2+bx+c的圖象上的兩點,若對于任意實數(shù)x1,x2,當x1+x2=0時,以P,Q為切點分別作函數(shù)f(x)的圖象的切線,則兩切線必平行,并且當x=1時函數(shù)f(x)取得極小值1.
(1)求函數(shù)f(x)的解析式;
(2)若M(t,g(t))是函數(shù)g(x)=f(x)+3x-3(1≤x≤6)的圖象上的一點,過M作函數(shù)g(x)圖象的切線,切線與x軸和直線x=6分別交于A,B兩點,直線x=6與x軸交于C點,求△ABC的面積的最大值.
(1)由題意:f'(x)=3x2+2ax+b
且f'(-x)=f'(x)恒成立知a=0①
又由
f′(1)=0
f(1)=1
?
3+2a+b=0
1+a+b+c=1

由①②③得:a=0,b=-3,c=3,f(x)=x3-3x+3…(5分)
(2)g(x)=f(x)+3x-3=x3(1≤x≤6)
g(x)在M處的切線方程是:y-t3=3t2(x-t),
即y=3t2x-2t3(1≤t≤6)
令x=6可得:B(6,18t2-2t3),C(6,0).
△ABC的面積S=
1
2
(6-
2
3
t)(18t2-2t3)=
2
3
t4-12t3+54t2,
S′=
8
3
t3-36t2+108t=
4
3
t(2t-9)(t-9),
令S′=0可得:t=
9
2
,t-=0(舍),t=9(舍),
∴S在[1,
9
2
]上為增函數(shù),[
9
2
,6]上為減函數(shù),
∴△ABC的面積的最大值為S(
9
2
)=
2187
8
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知點P(x1,y1)不在直線l:Ax+By+C=0(B≠0)上,則P在直線l上方的充要條件是
 
,P在直線l下方的充要條件是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1、F2分別是橢圓C:
x2
a2
+
y2
b2
=1,(a>b>0)
的左焦點和右焦點,O是坐標系原點,且橢圓C的焦距為6,過F1的弦AB兩端點A、B與F2所成△ABF2的周長是12
2

(1)求橢圓C的標準方程;
(2)已知點P(x1,y1),Q(x2,y2)是橢圓C上不同的兩點,線段PQ的中點為M(2,1),求直線PQ的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P(x1,y1),Q(x2,y2)(x1≠x2)是函數(shù)f(x)=x3+ax2+bx+c的圖象上的兩點,若對于任意實數(shù)x1,x2,當x1+x2=0時,以P,Q為切點分別作函數(shù)f(x)的圖象的切線,則兩切線必平行,并且當x=1時函數(shù)f(x)取得極小值1.
(1)求函數(shù)f(x)的解析式;
(2)若M(t,g(t))是函數(shù)g(x)=f(x)+3x-3(1≤x≤6)的圖象上的一點,過M作函數(shù)g(x)圖象的切線,切線與x軸和直線x=6分別交于A,B兩點,直線x=6與x軸交于C點,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年湖北省荊州中學高三(上)期末數(shù)學試卷(文科)(解析版) 題型:解答題

已知點P(x1,y1),Q(x2,y2)(x1≠x2)是函數(shù)f(x)=x3+ax2+bx+c的圖象上的兩點,若對于任意實數(shù)x1,x2,當x1+x2=0時,以P,Q為切點分別作函數(shù)f(x)的圖象的切線,則兩切線必平行,并且當x=1時函數(shù)f(x)取得極小值1.
(1)求函數(shù)f(x)的解析式;
(2)若M(t,g(t))是函數(shù)g(x)=f(x)+3x-3(1≤x≤6)的圖象上的一點,過M作函數(shù)g(x)圖象的切線,切線與x軸和直線x=6分別交于A,B兩點,直線x=6與x軸交于C點,求△ABC的面積的最大值.

查看答案和解析>>

同步練習冊答案