已知平面
截圓柱體,截口是一條封閉曲線,且截面與底面所成的
角為30°,此曲線是
,它的離心率為
.
橢圓,
橢圓,
,橢圓的短軸長為圓柱底面直徑2r,長軸長為
,所以離心率為
.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知點P與定點F
的距離和它到定直線
l:的距離之比是1 : 2.
(1)求點P的軌跡C方程;
(2)過點F的直線交曲線C于A, B兩點, A, B在
l上的射影分別為M, N.
求證AN與BM的公共點在x軸上.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若點
是以
為焦點的橢圓
上一點,
且
,
,則此橢圓的離心率
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
若橢圓
的左、右焦點分別為
,拋物線
的焦點為
F。若
,則此橢圓的離心率為
。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知圓
上的動點,點Q在NP上,點G在MP上,且滿足
.
(I)求點G的軌跡C的方程;
(II)過點(2,0)作直線
,與曲線C交于A、B兩點,O是坐標(biāo)原點,設(shè)
是否存在這樣的直線
,使四邊形OASB的對角線相等(即|OS|=|AB|)?若存在,求出直線
的方程;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)標(biāo)準(zhǔn)橢圓
的兩焦點為
,
在橢圓上,且
. (1)求橢圓方程;(2)若
N在橢圓上,
O為原點,直線
的方向向量為
,若
交橢圓于
A、
B兩點,且
NA、
NB與
軸圍成的三角形是等腰三角形(兩腰所在的直線是
NA、
NB),則稱
N點為橢圓的特征點,求該橢圓的特征點.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,橢圓
的左右焦點分別為
,
是橢圓右準(zhǔn)線上的兩個動點,且
=0.
(1)設(shè)圓
是以
為直徑的圓,試判斷原點
與圓
的位置關(guān)系
(2)設(shè)橢圓的離心率為
,
的最小值為
,求橢圓的方程
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的兩焦點與短軸的一個端點的連線構(gòu)成等腰直角三角形,直線
是拋物線
的一條切線.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點
的動直線
L交橢圓
C于
A、
B兩點.問:是否存在一個定點
T,使得以
AB為直徑的圓恒過點
T ? 若存在,求點
T坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
橢圓的中心在坐標(biāo)原點O,右焦點F(c,0)到相應(yīng)準(zhǔn)線的距離為1,傾斜角為45°的直線交橢圓于A,B兩點.設(shè)AB中點為M,直線AB與OM的夾角為
a.
(1)用半焦距c表示橢圓的方程及
;
(2)若2<
<3,求橢圓率心率e的取值范圍.
查看答案和解析>>