【題目】函數(shù)f(x)的定義域為開區(qū)間(a,b),導(dǎo)函數(shù)f′(x)在(a,b)內(nèi)的圖象如圖所示,則函數(shù)f(x)在開區(qū)間(a,b)內(nèi)有極大值點( )
A.1個
B.2個
C.3個
D.4個
【答案】B
【解析】解:如圖,不妨設(shè)導(dǎo)函數(shù)的零點從小到大分別為x1 , x2 , x3 , x4 . 由導(dǎo)函數(shù)的圖象可知:
當(dāng)x∈(a,x1)時,f′(x)>0,f(x)為增函數(shù),
當(dāng)x∈(x1 , x2)時,f′(x)<0,f(x)為減函數(shù),
當(dāng)x∈(x2 , x3)時,f′(x)>0,f(x)為增函數(shù),
當(dāng)x∈(x3 , x4)時,f′(x)>0,f(x)為增函數(shù),
當(dāng)x∈(x4 , b)時,f′(x)<0,f(x)為減函數(shù),
由此可知,函數(shù)f(x)在開區(qū)間(a,b)內(nèi)有兩個極大值點,
是當(dāng)x=x1 , x=x4時函數(shù)取得極大值.
故選B.
根據(jù)題目給出的導(dǎo)函數(shù)的圖象,得到導(dǎo)函數(shù)在給定定義域內(nèi)不同區(qū)間上的符號,由此判斷出原函數(shù)在各個區(qū)間上的單調(diào)性,從而判斷出函數(shù)取得極大值的情況.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+(b﹣8)x﹣a﹣ab,當(dāng)x∈(﹣3,2)時,f(x)>0,當(dāng)x∈(﹣∞,﹣3)∪(2,+∞)時,f(x)<0.
(1)求f(x)的解析式;
(2)若不等式ax2+bx+c≤0的解集為R,求c的取值范圍;
(3)當(dāng)x>﹣1時,求y= 的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為節(jié)約用水,計劃在本市試行居民生活用水定額管理,為了較為合理地確定居民日常用水量的標(biāo)準(zhǔn),通過抽樣獲得了100位居民某年的月均用水量(單位:噸),右表是100位居民月均用水量的頻率分布表,根據(jù)右表解答下列問題:
分組 | 頻數(shù) | 頻率 |
[0,1) | 10 | b |
[1,2) | 20 | 0.20 |
[2,3) | a | 0.30 |
[3,4) | 20 | 0.20 |
[4,5) | 10 | 0.10 |
[5,6] | 10 | 0.10 |
合計 | 100 | 1.00 |
(1)求表中a和b的值;
(2)請將頻率分布直方圖補充完整,并根據(jù)直方圖估計該市每位居民月均用水量的眾數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時,求的單調(diào)區(qū)間;
(2)當(dāng)時, 恒成立,求的取值范圍;
(3)求證:當(dāng)時, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若0<x< ,則2x與3sin x的大小關(guān)系( )
A.2x>3sin x
B.2x<3sin x
C.2x=3sin x
D.與x的取值有關(guān)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱柱ABC﹣A1B1C1的直觀圖和三視圖如圖所示,E是棱CC1上一點.
(1)若CE=2EC1 , 求三棱錐E﹣ACB1的體積.
(2)若E是CC1的中點,求C到平面AEB1的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)的定義域為開區(qū)間(a,b),導(dǎo)函數(shù)f′(x)在(a,b)內(nèi)的圖象如圖所示,則函數(shù)f(x)在開區(qū)間(a,b)內(nèi)有極大值點( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com